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ABSTRACT 

Peter Gorsevski, Committee Chair 

The goal of this study is to explore land use and land cover (LULC trends in Greater 

Accra Metropolitan Area (GAMA, a highly urbanized coastal region in Ghana by analyzing 

historical change rates and forecasting future scenarios. As industrialization and basic 

anthropological necessities increase in the region, natural land resources, specifically wetlands, 

are undergoing adverse changes.  With the help of Modules for Land Use Change Evaluation 

(MOLUSCE which is a plugin in QGIS, the study identifies land-use changes in GAMA for 

2002, 2013, and 2020 as well as forecasts and establishes potential land-use changes in 2030 and 

2040. The presented approach incorporates well-known algorithms such as artificial neural 

networks (ANN for computing transition potential maps coupled with cellular automata (CA 

simulation. To analyze their impact on LULC between 2002 and 2013, five criteria were used in 

the CA-ANN framework, including elevation, slope, distance from roads, distance from towns, 

and distance from rivers. The validation of simulated LULC maps for 2020 indicates a good 

level of accuracy, with a kappa value of 0.70 and a correctness percentage of 78.50%. The future 

scenarios between 2020 and 2040 indicate that urban development and sprawl are expected to 

increase annually at a dynamic degree rate of 0.86% at the expense of natural land covers such as 

wetlands and vegetation. The major road network in GAMA spearheads the growth of developed 

areas, while slope and elevation act as constraints. A high ratio of impervious to pervious 

surfaces confirms the rapid urbanization of the area. Urbanization is likely to have a more 

detrimental effect on natural habitats in the near future less so in the distant future. This study 
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emphasizes the importance of establishing appropriate urban planning policies and management 

methods for sustainable environmental conservation. 
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INTRODUCTION  

Wetlands provide important ecosystem services such as habitats for wildlife (Knight et 

al., 2001), mitigation of floods (Pattison-Williams et al., 2018), and climate moderation (Mitsch 

et al., 2013). Over the last century, wetlands have been polluted and have declined significantly 

due to rapid land cover change around the world (Zedler & Kercher, 2005). The principal threat 

to wetlands is attributed to anthropogenic factors such as urbanization, road and building 

construction, removal of vegetation for firewood and farmland creation, water consumption, 

pollution, and the introduction of invasive species among others (Ekumah et al., 2020; Sun et al., 

2020). In developed countries, the valuable services that wetlands provide are generally well 

understood. Therefore, conservation and restoration efforts have been implemented to preserve 

them (Niu et al., 2012; Uuemaa et al., 2018). Contrarily, the implementation of restoration efforts 

in developing countries has been much more challenging due to pressing needs for housing,   

increased food production, and other necessities. 

Specifically, massive areas of Ramsar wetlands (https://www.ramsar.org) which is an 

international program that preserves wetlands have been affected by urbanization globally. For 

example, an assessment of land cover changes between 1985 and 2017 at three Ramsar sites in 

Ghana suggested significant wetland losses at a rate of change between 2.6 % and 3.6 % 

annually (Ekumah et al. 2020). The study infers that urban expansion driven by the increased 

demand for dwellings was the chief factor that contributed to the destruction of wetlands. Also, a 

number of studies are pinpointing specific regions such as the Greater Accra Region of Ghana 

(the nation’s economic hub) that are experiencing very high rates of urban sprawl (Osei et al., 

2013; Stemn & Agyapong, 2014). Although Ghana has been a signatory of the Ramsar 

Convention since 1988 which obligates it to conserve its wetlands, it has lagged behind properly 

https://www.ramsar.org/
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managing and conserving its wetlands because of many factors including a lack of information 

on the extent and distribution of wetland resources (Ministry of Lands and Forestry, 1999; Job et 

al., 2020). Thus, identifying and mapping Ghana’s wetlands as well as understanding how they 

are impacted by anthropogenic activities are key steps in building a framework to understand, 

manage, rehabilitate, and conserve these ecosystems (Ozesmi & Bauer, 2002). 

Wetlands are defined as saturated ecosystems “areas with water long enough to promote 

wetland or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation, and 

various kinds of biological activities that are adapted to a wet environment” (National Wetland 

Working Group, 1997). Field surveys have been the traditional approach for detailed wetland 

mapping which involves delineation using field guides (Mackenzie & Moran, 2004) and tools for 

wetland sampling (Tiner, 1999). The identification of wetlands by field-based methods often 

relies on vegetation characteristics and species dominance that are adapted to the environmental 

conditions of wetlands-hydrophytes. However, a major shortcoming of this method is that the 

dominance of hydrophytes and their composition and distribution in wetlands changes with 

decreasing soil wetness. This leads to the need for an additional examination of the hydrology 

and presence of hydric soils, as vegetation characteristics alone are insufficient for mapping 

wetlands (Tiner, 1999). Moreover, field-based methods are costly in terms of time, labor, and 

resources and can best be applied to wetlands with small geographic extents which are easily 

accessible (Moser et al., 2016). 

Recent developments in remote sensing (RS) and geographic information systems (GIS) 

techniques provide a new modeling framework that enables widespread applicability and 

advancements for identifying and mapping different earth features, including wetlands (Ozesmi 

& Bauer, 2002; Kumar & Sinha, 2014). RS-based methods are more cost-effective than field 
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surveys and they provide better observational capabilities at the satellite, aerial, drone, or 

unmanned aerial vehicle (UAV), and ground levels. At different scales, a variety of airborne 

approaches have been used for mapping wetlands using RS data from platforms like Landsat, 

Sentinel, ALOS PALSAR, and LiDAR (Mahdianpari et al., 2017; Wu & Lane, 2017; Niculescu 

et al., 2020). However, RS methods do not rule out field-based methods rather they reduce the 

need for detailed field data and provide a synoptic view for mapping and monitoring large 

geographic areas (Mahdavi et al., 2018). In fact, the field-based methods or in situ ground 

observations are complementary tools that support RS classification, accuracy, and assessment 

methods (Rundquist et al., 2001; Ozesmi & Bauer, 2002; Dronova, 2015). 

Satellites such as the Landsat and Sentinel provide open access to data that can be 

processed over large areas and at regular time periods (Gabrielsen et al., 2016). Most wetland 

data present today at the global and national levels are derived from satellites (Lehner & Döll, 

2004; Niu et al., 2012). The multispectral sensors acquire information at different spectral bands 

in the visible, near-infrared, mid-infrared, and thermal infrared regions of the electromagnetic 

spectrum. Thus, they are useful in classifying and separating wetlands from other land cover 

features (Arzandeh & Wang, 2002; Gosselin et al., 2014; Gallant, 2015). Several indices such as 

the normalized difference vegetation index (NDVI), normalized difference built-up index 

(NDBI), and modified normalized difference water index (MNDWI) can be derived from optical 

images and incorporated into wetland delineation models which are often used for land use and 

land cover (LULC) assessment (Li & Chen, 2005; Sun et al., 2020). 

LULC changes are an effective technique that is employed in diverse disciplines in the 

monitoring, assessment, evaluation, mapping, and prediction of the impact of change on 
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ecosystems at various spatio-temporal scales (Halmy et al., 2015; Balogun & Ishola, 2017; 

Aboelnour & Engel, 2018). 

With the global increase in urban areas, a proper understanding of past and extant 

scenarios of LULC changes provides managers the opportunity to evaluate past management 

decisions and allow them to review land management plans that can alleviate anthropogenic-

induced impacts on the environment (Liou et al., 2017; Faisal & Khan, 2017). Urbanization is 

most prevalent in developing countries, where rapid socio-economic and infrastructure growth 

has led to extensive LULC changes that adversely affect environmental sustainability (Abdullah 

et al., 2019). Ghana, in particular, has urbanized rapidly, and now has a large proportion of its 

population living in urban areas. In 2010, close to half of the nation’s population was estimated 

to be urban, a figure that is projected to reach seventy percent (70%) by 2050 (Ghana Statistical 

Service, 2010). LULC change studies have identified urban growth as the primary cause of 

fragmentation and eventual loss of important ecosystems like wetlands (Awotwi et al., 2019; 

Ekumah et al., 2020). Thus, monitoring LULC changes is necessary for devising proper 

management practices that are geared towards biodiversity conservation and environmental 

sustainability (Ekumah et al., 2020). 

LULC change detection techniques rely on the use of RS and GIS techniques which are 

important sources of information for various spatial decision support systems. The use of these 

techniques allows for timely and detailed views of land cover changes and analytics, providing a 

useful approach for monitoring the dynamics and spatial distribution of urban areas (Tian et al., 

2014; Hua et al., 2017; Kafy et al., 2020). For example, Adade et al. (2017), used RS and GIS 

techniques to assess LULC changes in the Songor Ramsar Site in the southeastern coastal 

savanna of Ghana. The Songor Ramsar Site provides habitat and breeding grounds for turtles and 
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several bird species, such as the black-winged stilt. According to the study, there was 

considerable habitat loss and fragmentation of the site, caused mostly by deforestation, sustained 

by human settlements, agriculture, and infrastructure development. LULC is thus critical to 

understanding environmental change dynamics, past conditions, monitoring, planning, 

management, forming policies, and integrating RS and GIS. 

Literature provides various methods for predicting LULC changes. These methods differ 

depending on the purpose, approach, scale, geographic areas of interest, assumptions, and the 

source and type of data used (Michetti & Zampieri, 2014). Commonly used LULC mapping 

techniques are artificial neural network (ANN) (Prasad et al., 2017; Shihab et al., 2020), random 

forest (RF) (Christovam et al., 2019; Shihab et al., 2020), spectral angle mapper (SAM) 

(Christovam et al., 2019), support vector machine (SVM) (Otukei & Blaschke, 2010; Prasad et 

al., 2017; Christovam et al., 2019), maximum likelihood (ML) (Manandhar et al., 2009; Otukei 

& Blaschke, 2010; Allam et al., 2019), and decision tree  (DT) (Otukei & Blaschke, 2010; Hua et 

al., 2017; Yang et al., 2017). 

The DT classifier or classification and regression trees (CART) algorithm is a 

nonparametric technique used for predictive modeling in the field of machine learning. The 

continuous or categorical dependent variable in CART is explained by multiple independent 

variables (i.e., vegetation indices or GIS layers). Its predictive models are produced by recursive 

partitioning of the data space and fitting a simple model that can be represented graphically as a 

decision tree. The structure of the decision tree consists of root nodes, internal nodes, and leaf 

nodes. The root node is the beginning node or the dataset used in the predictive model, the 

internal node is the decision-making node that splits the data into subgroups (i.e., homogeneous 

objects) and the leaf node is the terminal node that holds the decision. In the recursive process, 
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the division increases in homogeneity until each node represents a class (Hua et al., 2017; 

Mahdavi et al., 2018). Using Landsat data, Otukei & Blaschke (2010) examined DT, ML, and 

SVM-based strategies for assessing land cover change and found that DT-based methods 

outperformed the others. 

Other popular LULC approaches include empirical and statistical models, such as 

Markov chains (MC), regression models, cellular automata (CA), agent-based models (ABM),  

system dynamic models, and integrated models such as the conversion of land use and its effects 

(CLUE) model (Guan et al., 2011). The CA model is one preferred approach to simulate spatio-

temporal urban expansion and it addresses many environmental problems (Liu et al., 2017; 

Alam et al., 2021). The CA is characterized by cellular space which is the spatial representation 

of two-dimensional lattice or cells that represent land uses, neighborhood, and transition rules. 

Indeed, the transition rules determine the state of a cell in the next generation based on the 

current state and the state of the neighborhood (i.e., Von Neumann and Moore neighborhood) 

(Santé et al., 2010; Losiri et al., 2016; Kourosh Niya et al., 2020; Gharaibeh et al., 2020). For 

example, the slope, land use, exclusion, urban, transportation, and hillshade (SLEUTH) is a land-

use change model based on the CA model that applies transition rules to the states of gridded 

cells (Silva & Clarke, 2002; Jayasinghe et al., 2021). The calibration process in SLEUTH is 

achieved based on the comparison of simulated results and observed historical data or based on 

an expert’s hypothesis (Guan et al., 2005). Although CA model applications have increased due 

to its simplicity, flexibility, and ability to integrate processes spatially and temporally, several 

limitations exist in the quantitative aspect of the CA model, such as the inability to simulate 

driving forces (Santé et al., 2010; Aburas et al., 2016; Alam et al., 2021). These limitations are 
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often managed by coupling CA models with other quantitative models such as the MC (Santé et 

al., 2010; Arsanjani et al., 2013; Aburas et al., 2016). 

MC is a stochastic approach used widely in urban growth modeling suited for short-term 

projections with a one-step transition, that is the probability of transitioning from one state to 

another in a single step (Rendana et al., 2015; Gharaibeh et al., 2020). However, multi-step 

transitioning can easily be simulated by combining the capability of a cellular automata Markov 

chain (CA-MC) model to predict changes in LULC (Yuan et al., 2015; Kafy et al., 2021, Halmy 

et al., 2015; El-Tantawi et al., 2019; Addae & Oppelt, 2019; Abbas et al., 2021). 

Some of the CA-MC frameworks derive transition probability matrices by cross-

tabulation of land cover changes with integrated driving forces (i.e., factors such as slope, 

elevation, and distance from roads) from algorithms such as ANN (Losiri et al., 2016; Gharaibeh 

et al., 2020; Sobhani et al., 2021, Kourosh Niya et al., 2020). For example, ANNs are 

biologically inspired computer models by the human brain and nervous system that allow the 

learning of relationships and concepts for simulating complicated systems such as geospatial 

dynamic phenomena ( Li & Yeh, 2002; Mohammady et al., 2014; Alam et al., 2021). In addition 

to capturing nonlinear relationships between factors, ANNs can be used to analyze complex 

patterns such as urban growth and land-use change. The back propagation (BP) is the most 

widely used algorithm which consists of an input layer, an output layer, and one or more hidden 

layers where weights are randomly generated, and then the variances between expected and 

calculated outputs are calculated and adjusted according to a generalized delta rule. This iterative 

process is continuous until weights are optimized and output error is minimized (Guan et al., 

2005; Gharaibeh et al., 2020). The advantage of ANN is that they directly illustrate the effects of 

each driving factor during the simulation and specify which factors have a greater effect for a 
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clearer understanding of land changes (Park et al., 2011; Gharaibeh et al., 2020). A CA-ANN 

model is a reliable method for predicting potential future LULC and plays an essential role in 

land use planning and management (Pijanowski et al., 2002; Guan et al., 2005). 

In Ghana, although there is an increasing interest in the application of accurate wetland 

mapping, relatively few studies have investigated the areas at risk and the important drivers of 

wetland changes. This study uses the integrated CA-ANN modeling approach in the Greater 

Accra Metropolitan Area (GAMA), to identify LULC changes for the period 2002 - 2020 as well 

as predict potential changes in LULC for 2030 and 2040, with a particular interest in the impacts 

of urban growth on wetlands in the region. This research can provide useful results for planning 

and developing sustainable land and wetland management policies. 

Objectives 

The purpose of this research is to ascertain the changes wetlands have undergone over the 

years in GAMA, what drives these changes, and finally, predict their future extent based on 

transitional trends. The specific objectives are: (i) to delineate wetlands and implement 

classification analysis of temporal land cover changes; (ii) to simulate and predict future 

potential land-use changes. 

The first objective seeks to display and determine wetland extent from LULC maps 

created from classified spatio-temporal satellite images. LULC maps are generated from optical 

bands from satellite images as well as indices derived from them using the DT classification 

algorithm. The second objective predicts potential land-use changes by CA-ANN approach and 

assesses the potential environmental risks associated with continued LULC changes. 
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MATERIALS AND METHODOLOGY  

Study Area  

The Greater Accra Metropolitan Area (GAMA) is the area of focus in this study. GAMA 

lies along the Atlantic coast of Ghana in West Africa (Figure 1). It is the political and economic 

center of the country. GAMA has a population of about four million people (Ministry of Gender, 

Children and Social Protection, 2014) which is growing at a rate of 4.4% per year. The study 

area is the most urbanized in the country with more than 90% of its population living in urban 

areas (Osei et al., 2013). The topography of the region varies from flat to gentle slopes with a 

few isolated hills (Njomaba et al., 2021). 

The region lies within the dry equatorial climatic zone with two rainy seasons. The first 

rainy season begins in March and ends in July while the second begins in September and ends in 

November. The region experiences a mean average temperature of 26.8 °C (Njomaba et al., 

2021). Severe perennial floods are a persistent problem in this region due to factors such as 

urbanization with its detrimental effects on the drainage system and important flood mitigation 

ecosystems like wetlands (Asumadu-Sarkodie et al., 2015). 

There are two coastal urban wetlands in the study area; the Densu Delta and the Sakumo 

Ramsar sites. Ramsar sites Densu and Sakumo are being depleted at an annual rate of 2.6 and 

3.6%, respectively (Ekumah et al., 2020). The region has coastal savannah and inland forest 

areas in the Ga districts (Osei et al., 2013). 

Datasets 

The multispectral Landsat imagery (Table 1) was acquired from the USGS Global 

Visualization Viewer (GloVis) (https://glovis.usgs.gov/) while the Global Digital Elevation 

Model (GDEM) data were obtained from NASA’s EarthData platform 

https://glovis.usgs.gov/
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(https://search.earthdata.nasa.gov/search/). The Landsat images were acquired from December to 

January, during the dry season, to obtain images with fewer clouds and avoid extreme variations 

in land cover reflectance. At the preprocessing stage, atmospheric corrections were performed by 

the Quick Atmospheric Correction (QUAC) which is often applied for conditions such as thick 

haze, smoke, or under cloud cover after datasets acquired were transformed from DN values to 

radiance. Other auxiliary datasets including vector data for roads, water bodies, administrative 

boundaries, and towns were provided by the University of Ghana. The UTM (Universal 

Transverse Mercator) projection system, World Geodetic System 1984 (WGS84) datum, zone 30 

N was assigned to all datasets. 

Google Earth (GE) imagery was used to collect training datasets for executing supervised 

classification in conjunction with CART. The Landsat imagery was classified into four LULC 

classes; developed, vegetation, wetlands, and water (Table 2). First, LULC polygons for each 

class were delineated, then 300 points were extracted by means of random sampling (1200 points 

total). In the study, 80% of training data collected were used to train the model while 20% of the 

data were used to test the model. The selection of acceptable training sites was aided by 

multitemporal Google Earth imagery, world street maps, and the researchers’ expertise in the 

study area. The selected model training and LULC classification data followed a uniform 

distribution across the study area; equal numbers of training points in each class were sampled 

across the study area. Existing Google Earth images corresponding to the 2002 study area had a 

lower resolution compared to recent years (2013 and 2020). This is especially noticeable when 

trying to pinpoint areas related to small city patches or inland waters. Therefore, multi-year 

NDVI, MNDWI, and NDBI datasets were created along with the preprocessed bands to support 

the generation of training data. The methodological workflow for the study is shown in Figure 2. 

https://search.earthdata.nasa.gov/search/
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Collection of Spatial Variables  

Numerous biophysical, social-economic, proximate, and political factors influence LULC 

changes. For example, biophysical factors such as topography and climate have been shown to 

have a significant impact on human activities (Addae & Oppelt, 2019; Kamaraj & Rangarajan, 

2022). In addition, social-economic factors, such as population, GDP, and proximate factors, 

such as distance from roads, towns, or rivers, are likely to affect changes in landscape patterns 

(Hakim et al., 2019; Bhandari et al., 2021). Development of infrastructure may be connected 

with urban increase and additionally results in LULC conversion, particularly in Latin America, 

Asia, and Africa. Other factors, including political issues such as war and policy, are influencing 

changes in LULC. This study used biophysical and proximate factors to model LULC change. 

Correlation coefficients such as Pearson’s r and Crammer’s V are used to test the strength 

of relationships between driver variables and LULC changes. Assessing the correlation before 

modeling the transition potential is essential, as computational performance can be significantly 

improved when highly correlated explanatory variables are excluded. A Pearson’s r is a number 

between -1 and +1 where the value of -1 indicates a full negative linear correlation, 0 being no 

correlation, and + 1 meaning a full positive correlation. Crammer’s V ranges from 0.0 to 1.0, 

with a value of 1.0 indicative of a very strong association and a value approaching 0.0 indicating 

little or no correlation between the driver variable and land use changes. Values are not 

considered definitive and values above 0.1 are usually considered useful. 

LULC Classification and Accuracy 

Land cover classification using DT methods is more convenient and efficient (Otukei & 

Blaschke, 2010; Wang et al., 2014; Yang et al., 2017). In a decision tree, each stage is based on a 

hierarchical decision scheme or tree-like architecture. Trees contain a root node that contains all 
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data, a variety of internal nodes, and a set of terminal nodes (leaves). The decision tree’s nodes 

make binary decisions that separate one or more classes from the remaining classes. In general, 

processing occurs when moving down the tree until a leaf node is reached. The basic concept of 

a decision tree is to simplify a complex decision into several simpler ones, which leads to a 

simplified solution. This technique was used to assign each pixel to one of several classes based 

on its spectral sensitivity. Because the development of a decision tree necessitates supervised 

training, a training dataset including independent and dependent variables is required (Figure 3). 

The decision tree was built using R (https://cran.r-project.org) programming software and 

includes independent and dependent variables. 

The classification results were evaluated based on a confusion matrix, using four 

validation metrics including Cohen’s kappa coefficient (k), overall accuracy (OA), producer’s 

accuracy (PA), and user’s accuracy (UA). The Cohen’s kappa is a measure of agreement 

standardized on a scale of -1 to 1. Values above 0.6 are considered high agreement whereas 

values that are less than 0.4 or negative indicate discordance (Zec et al., 2017; Alam et al., 2021; 

Devi et al., 2022; Kamaraj & Rangarajan, 2022). The producer accuracy tells us whether or not a 

sample is likely to be correctly classified whereas the user accuracy shows the likelihood that a 

sample from the classified map is representative of that category on the ground (Story, 1986; 

Halmy et al., 2015). For each class, the producer and user accuracy were computed, as well as 

the overall accuracy for the classes. The kappa (k) coefficient is calculated by (Kamaraj & 

Rangarajan, 2022): 

𝑃𝑜 − 𝑃𝑒 
𝑘 = 

1 − 𝑃𝑒 

where 𝑃𝑜 is the proportion of observations in agreement, 𝑃𝑒 is the proportion of expected 

agreement. 

https://cran.r-project.org/
https://cran.r-project.org/
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The post-classification change detection method was used to quantify, identify, and 

analyze the discrepancies in the produced land-use maps. Using the classified images, this 

technique is able to generate a complex change matrix while also limiting the impacts of sensor 

and atmospheric changes (Singh, 1989; Addae & Oppelt, 2019). The rate of LULC change was 

assessed by the dynamic degree (DD) modeling approach. The DD of a single land use type 

indicates the rate of land use change of that particular use type within a certain time range. Based 

on the following equation (Nath et al., 2020), the DD can be computed: 

𝐴𝑦 − 𝐴𝑥 
𝐷𝐷 = × 100% 

𝐴𝑥 × 𝑇 

where Ax is the area in the initial year, Ay is the area in the final year, and T is the temporal scale 

(i.e., the length of the study period). In this study, T represented the years between the time 

periods. 

Methodological Approach 

This study required a model that predicted the state of wetlands in GAMA in the years 

2030 and 2040, so it was calibrated and validated by simulating LULC in 2020. In order to 

determine this, the spatio-temporal changes in the LULC classes, as well as the transition 

probabilities between study intervals (2002 – 2013), were derived. LULC types that underwent a 

transformation as well as those that remained unaltered are revealed in the change maps. The 

transition potential was developed using a set of driver variables that represented the key 

influences on change in the region. The LULC data and explanatory variables were used to 

derive a transition probability matrix, with rows and columns of landscape categories in the 

initial and final years. The transition potential model in this study was derived using the ANN 

multi-layer perception method. An analysis of spatial patterns and a literature review of similar 
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studies were used to select the variables. Elevation, slope, distance from towns, distance from 

rivers, and distance from roads were the driver variables used in this study (Figure 4). 

Distance drivers are representative of the proximity of pixels to forces that act as 

constraints to change. Distance from road drivers gave an indication of pixels’ accessibility to 

roads in the region. Elevation and slope also helped to determine the geophysical limitations in 

the region. Physical and anthropogenic impacts on LULC dynamics can be measured with these 

variables as part of LULC change analysis. In this study, drivers were reclassified on a scale of 

1-5 based on their proximity or value. The areas with the least distance in the study area would 

be in class 1 whereas the areas with the farthest distance are in class 5. These thresholds were 

determined by equal distances. For instance, the pixels that are within one kilometer of a major 

road will be shown in class 1, whereas pixels within two kilometers of a major road will be 

shown in class 2. A sensitivity analysis was conducted to determine which driver played the most 

important role in the modeling process by comparing the accuracy derived from different 

scenarios while altering combinations of different drivers. The integrated open-source CA-ANN 

multi-temporal approach followed, using the Modules for Land Use Change Simulations 

(MOLUSCE) plugin in Quantum GIS (QGIS). 

The CA provides the spatio-temporal framework for LULC, whereas the ANN governs 

the local transition rules which are updated with each new time-step based on the local evolution 

rules. The LULC for 2020 was predicted using LULC data from 2002 and 2013, explanatory 

variables, and a transition matrix. The kappa validation technique was used as a comparison of 

actual and predicted LULC images to validate the model and prediction accuracy (Figure 5). 

Validation was performed to assess the CA-ANN model's ability to predict LULC for the years 

2030 and 2040 in the study area. To project the LULC for 2020, 200 iterations and a 
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neighborhood value of 3 x 3 pixels, a learning rate of 0.001, 5 hidden layers, and 0.001 

momentum were chosen in the ANN learning process (Figure 6). 

Land-use change models based on CA often emphasize neighborhood interactions as one 

of the primary driving factors (Verburg et al., 2004). Li & Li (2015) investigated the effects of 

neighborhood size on model performance and revealed that as the neighborhood size increased, 

both the overall accuracy and kappa coefficients increased slightly. The increase, however, was 

not significant enough to affect the results. Again, the learning rate affects how quickly network 

weights are tuned to learn the characteristics of input data. At a small learning rate, minor 

adjustments to the weights are applied and the learning process is very slow, resulting in slow 

convergence. Conversely, if the rate of learning is too high, the network is unusable because the 

weights oscillate. By incorporating the momentum factor, one can control the weight oscillation 

and avoid problems when searching for a minimum value on the error surface. The momentum 

factor may also be used to speed up the convergence process (Gorsevski et al., 2016). In this 

project, LULC data from 2013 and 2020 was used to forecast the LULC in 2030 and 2040 after 

receiving satisfactory results from model validation. 
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RESULTS AND DISCUSSION  

Figure 7 shows the land use maps generated by CART for the years (a) 2002, (b) 2013, 

and (c) 2020. For example, the maps in Figures 7(a) and 7(b) were classified using Figure 3. In 

comparison with vegetation and wetland classes, water and development were depicted by 

simpler rules. Water was depicted using SWIR exceeding a particular threshold, 17.5 for CART 

2002 and 29.5 for CART 2013. In CART 2002 and 2013, developed was depicted at the first 

internal node by RED greater than 47.5 and 51.5, respectively. The MNDWI was used to depict 

vegetation and wetland that had more complex rules after going through several nodes. 

As Figure 7(d) shows, the developed class dominates the landscape of the study area, 

approximately 55% of the total area while wetlands had the lowest class percentage (less than 

8%) and vegetation coverage tended to decline the most from 2002 to 2020. For the 20% of 

remaining training data (60 grid cells per class) used for validation, the average user and 

producer accuracy was above 90% for each class. The overall accuracy exceeded 90% and kappa 

indices of agreement exceeded 0.8 (Table 3). It was apparent that there was some confusion 

between some LULC classes, which showed lower user and producer accuracies of 79-89% 

(Table 4). In 2002 and 2013, the wetlands LULC class was easily confused with vegetation 

because images used in the analysis were acquired during the dry season when moisture content 

may be reduced or non-existent, thus causing these areas to be classified as vegetation due to the 

dominant reflectance of hydrophytes. 

In order to determine historical changes in LULC, Landsat images from 2002, 2013, and 

2020 were analyzed on a temporal basis at equal intervals. Cloud-free months were considered in 

this study to maintain similarity in inter-cluster and intra-cluster variability. As seasonal changes 

are always reflected in the image for classes such as vegetation or water, it is best to use images 
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from a particular season to understand how the classes have changed. It would have been more 

appropriate to consider the 2011 images instead of 2013 in this study if strict equal intervals were 

to be maintained. Consequently, in this study, Landsat images from 2013 were used instead of 

2011 in order to maintain image clarity and quality could be maintained. It was impossible to 

obtain cloud-free and noise-free Landsat images for the study area in 2011. Similarly, the model 

calibration was based on 2013 Landsat imagery rather than 2011 data with the assumption that 

no significant change had occurred between these two years. Thus, in order to generate change 

scenarios for 2020, the LULC map of 2002 and 2013 were analyzed, whereas 2020 data was 

used for the validation of the model. 

LULC classes were analyzed using a change detection analysis from 2002 to 2020. The 

DD is the annual rate of change in each LULC class. For the four LULC classes, the annual 

change rates are found to be 1.88%, -2.47%, 1.63%, and 0.06%, for developed, vegetation, 

wetland, and water, respectively (Table 5). Positive annual change rates indicate an area's growth 

rate over time. In the period being investigated, the increase is evident from 2002-2020. 

Alternatively, negative change indicates the rate at which an area decreases. An annual change 

rate of -2.47% for vegetation, for instance, indicates that vegetation area is declining at a rate of 

2.47%. Nonetheless, as can be seen from Figure 8, the percentage of transformation computed by 

the DD is inconsistent between 2002 and 2013, as well as 2013 and 2020. 

During the period 2002-2013, wetlands decreased by 0.31 % annually, while they 

increased by 4.8 % yearly from 2013 to 2020. The waterbodies class increased by 0.19 % 

annually from 2002 to 2013 but decreased by 0.13 % from 2013 to 2020. Vegetation declined 

continuously in different periods at different rates, such as 3.33 % from 2002 to 2013 and 1.78 % 

between 2013-2020. An increasing trend rate was observed in the Developed class, such as a 
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soaring 2.85 % in 2002-2013, and a slowly increasing 0.27 % in 2013-2020. Rapid urbanization 

is driving the decline of vegetation and other classes, as shown by the increase in the rate of 

change for developed classes. Several researchers have made similar observations (Akubia & 

Bruns, 2019; Ashiagbor et al., 2019; Nath et al., 2020). 

For each phase, the areal coverage gains or loss, as depicted in Figure 8, indicates an 

increase in developed class and a reduction in natural areas, such as vegetation cover. During 

certain time intervals, however, certain classes of land cover revealed atypical behavior. While 

wetlands were the least notable land type for each LULC period (less than 6% coverage of the 

entire study area), they showed an increase of nearly 5% from 2013 to 2020. Floods in the region 

have been exacerbated by climatic changes over the past decade, which may explain the changes 

in wetland class rates. According to Intergovernmental Panel on Climate Change (IPCC) 

forecasts, the average monthly precipitation in Accra has increased from 160 mm in 1991-2010 

to 200 mm in 2011-2020 (Asumadu-Sarkodie et al., 2015). 

Transitional Potentials in the LULC Dynamics 

Table 6 shows the transition probability matrix for 2002–2013, with vegetation and 

wetlands more likely to become developed land cover with probabilities of 0.42 and 0.17 

respectively. Based on this same period, there is a 0.4 probability that wetlands will be turned 

into vegetation. In some cases, this may be influenced by the proximity of wetlands to towns, 

where wetlands are often converted into vegetable gardens for food. The LULC transition 

between two same classes (wetland to wetland, developed to developed) indicates that the class 

is likely to persist for the time interval. For instance, for the period 2002-2013, the likelihood of 

developed and waterbodies remaining the same is 0.93 and 0.99, respectively, which means that 

93% and 99% of the area would remain unchanged (Table 6). Similarly, the transition probability 
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between two classes over a specific time period indicates the likelihood of moving from one 

class to another. The transition probability of 0.42 between vegetation and developed land 

between 2002 and 2013 indicates that there is a 42 % of chance for the vegetation land cover to 

transition to developed area by 2013. According to the study, the chances of vegetation and 

wetland cover converting to developed land cover have been calculated to be 0.46 and 0.27, 

respectively, for the period 2002-2020 (Table 7). In terms of transition probability values, 

vegetation lands are highly susceptible to becoming developed lands. Furthermore, waterbodies 

and developed land cover were persistent throughout both time periods. For instance, the 

probability of water converting to another land cover is less than 0.007 at any point in time. 

Table 8 discusses the maximum kappa coefficients and overall accuracy for various 

spatial combinations. The analysis concluded that all variables were good predictors of the 

LULC map, with all different combinations exhibiting a kappa value greater than 0.6. From the 

sensitivity analysis, the combination without elevation showed the highest kappa and percentage 

of correctness indicating the least influence from elevation considering all the other variables. 

Moreover, the analysis highlights distance from rivers and distance from roads as the most 

influential factors. 

LULC Prediction and Validation 

An analysis of the areal statistics for each class of LULC features comparing observed 

and simulated data for the year 2020 can be found in Figure 9. A comparison of the results also 

indicates that the model over-predicts waterbodies and developed land types, whereas it 

underpredicts wetlands and vegetation. The simulated and observed LULC maps of 2020 were 

compared (Figure 10). The overall simulation success of the CA-ANN model is 78.50 % and the 

current kappa value is 0.70, which has been considered satisfactory (Table 8). 
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Figure 11 shows the predictive output, along with the spatial distribution of these potential future 

scenarios of LULC. Table 9 offers a statistical analysis of the future predictions. During the 

period 2020–2040, the area of developed land is predicted to increase significantly, along with a 

loss of vegetation and wetlands. Furthermore, developed lands spread outward in a west-east 

direction and towards the north of the study area in agreement with observations from other 

studies (Osei et al., 2013; Stemn & Agyapong, 2014). For instance, towns on the outskirts of 

GAMA, Pokuase and Oyarifa, as well as their immediate neighboring towns (those adjacent to 

the Eastern region of Ghana, which borders Greater Accra region at the north), are expected to 

grow rapidly in terms of developed land. In contrast to the rapid growth of developed areas 

during the entire study period, there was little growth in areas of high elevation and slope (north-

northwest of GAMA). Deforestation was especially prone to occur in vegetation adjacent to 

developed areas and existing in small patches. According to the study, the main road network 

that passes through the region is responsible for the growth of developed areas in the study area. 

The analysis of all predicted results shows the need for better protection of the environment and 

preservation of natural land cover in the study area is important, considering there are two 

Ramsar sites in the region that are of international significance. 

Figure 12 shows the future LULC rate of change (gains/losses) in each class over 

different time periods. The annual growth rate of developed land cover was predicted to be 

1.20% between 2020 and 2030, and 0.32% between 2030 and 2040. Urbanization was expected 

to be most intense from 2020 to 2030. The model also predicts that developed land cover will 

grow at an average annual rate of 0.86 % over the period 2002-2040 (Table 9). There is a 

significant declinature in vegetation land predicted in the next few decades, with an average 

annual rate of 3.92 % between 2020 and 2030 and 2.27 % between 2030 and 2040. For wetland 
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cover, the model predicts an annual decline rate of 3.10% and a remarkable annual growth rate of 

2.02% for the time intervals 2020-2030 and 2030-2040, respectively. In each future scenario, the 

amount of water bodies is predicted to change by less than 0.05% annually (Figure 12 and Table 

9). 

The derived LULC maps were also used to find the proportions of pervious and 

impervious surface areas (Figure 13). Pervious and impervious describe the ability of water to 

penetrate the earth's surface. Thus, pervious areas allow easy penetration of water whereas 

impervious regions allow little to no water penetration. Consequently, impervious areas allow 

more surface runoff, which promotes flooding. Generally, the developed class was assumed to be 

impervious since it is dominated by roads, concrete structures, and pavements, whereas other 

classes (vegetation, wetland, water) were assumed pervious. According to the study, the 

impervious to pervious surface ratio has been increasing over the last two decades (2002-2020). 

The percentage of pervious land was 59% in 2002, while 41% of the land was impervious. The 

proportion of impervious areas increased to around 54% in the recent scenario for 2020. The 

predicted results for 2040 climbed to 64% for impervious surfaces and a reduction of 36% for 

pervious surfaces (Figure 13). In the study period, the impervious to pervious ratio will reach 

1.76 by 2040, up from 0.68 in 2002 and 1.19 in 2020. A significant decrease in the pervious 

surface is predicted during the next decade (2020-2030) based on the analysis. Urbanization and 

other human activities have greatly impacted all LULC classes from 2020 to 2040, including 

vegetation, wetlands, and water bodies. Based on the LULC map of 2040, the pervious surface 

area has been significantly reduced, which could indicate a potentially hazardous environment in 

the future. It is evident that landscape maintenance and development are needed given the 

destruction of natural land cover. 
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An increase in developed land cover is attributed to increased population growth and 

associated housing production, as well as non-residential built-up development, for example, 

industrial and commercial areas. Humans utilize the land in numerous ways and for a variety of 

purposes, among all natural resources (Devi et al., 2022). In this way, the LULC pattern of a 

region is directly influenced by population change (Owusu, 2012; Akubia & Bruns, 2019; Addae 

& Oppelt, 2019; Ashiagbor et al., 2019; Ekumah et al., 2020; Alam et al., 2021). 

With specific reference to GAMA, its population increased by more than 50% between 

1984 and 2014, with an annual growth rate of 4% (Ashiagbor et al., 2019). In addition to its long 

history as a trading hub, Accra's diverse economy (i.e., manufacturing, services, trade, and 

construction) and its high property values attract many domestic and international migrants 

leading to significant LULC change within its boundaries. As Songsore, (2010) noted, the high 

urbanization of Accra is attributed to the city being the main destination of rural-urban migration 

in Ghana. Its status as the largest and most developed city in Ghana has made Accra the 

destination of choice for many migrants because it provides them with good job opportunities, 

social amenities, and relative peace and stability. 

This LULC study has provided evidence of rapid urbanization in GAMA and a 

perspective on the region's future. It contains valuable information on where urban expansion is 

likely to occur in the upcoming years to land planning and management officials. The 

stakeholders in GAMA’s urban development can thus make informed decisions regarding 

neighborhood design and planning, and amenities provision, as well as policy formulation and 

implementation based on the projections. Efforts need to be focused on the urban fringes, where 

most of the urban growth will take place. 
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Additionally, there are also significant implications for the environment in the region 

from this study. The protection of GAMA’s wetlands is critical because they can help to control 

floods in addition to its other environmental services. As GAMA’s population grows, however, 

the remaining wetlands could be encroached upon as people compete for any available land. 

Further, the vegetation cover of the region is expected to dwindle due to urbanization. In addition 

to destroying many areas of ecological importance, the destruction of these areas will also 

increase the amount of flooding, and air pollution in this area unless remedial measures are 

taken. In particular, encroachment regulations on wetlands must be developed and enforced 

strictly in GAMA to protect them. 

Urban planning and policy formulation should fully utilize the power of urban simulation 

and modeling as this study exemplified through its focus on GAMA’s wetlands. An effective 

way to compare alternative scenarios is to consider population and economic projections and 

likely future space demands. A variety of future land-use models can be tested using multiple 

policy scenarios and perspectives which can provide a robust framework for urban planning and 

management and decision-making in GAMA (Pan et al., 2018; Addae & Oppelt, 2019). 

However, the model study is not without limitations despite its effective simulations. For 

instance, the model overpredicts the values of developed land types and water bodies, while 

underestimating the values of vegetation and wetlands. Moreover, the simulations did not include 

all possible drivers of LULC change such as the density of the population, the economy, and 

regional government policies. With a more or better representation of drivers in the model, 

forecasting can be enhanced (Kale et al., 2016; Bhandari et al., 2021) 
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CONCLUSIONS  

In this research, an integrated CA-ANN approach was used to forecast future LULC 

scenarios within a highly urbanized GAMA region. The integration of CART-based supervised 

classification of multi-temporal Landsat imagery (2002, 2013, 2020) and other socio-economic, 

spatial, and environmental variables (elevation, slope, distance from roads, distance from towns, 

distance from rivers) was used to produce potential transition maps for analyzing and modeling 

GAMA’s LULC dynamics. The prediction of future LULC in the GAMA region was carried out 

by the CA-ANN model embedded in the MOLUSCE plugin of QGIS. LULC maps were 

generated and validated with Landsat data from 2002 to 2020 using the decision tree 

classification technique. A spatiotemporal analysis of LULC maps in GAMA shows the 

significant expansion of developed land while vegetation is decreasing. Changes in LULC have 

been accelerated by socio-economic development and human encroachment into the natural 

landscapes. Furthermore, computation of the annual growth rate, considering the dynamic degree 

of LULC, yielded a negative trend in vegetation at an annual rate of -2.47% per year. In the 

period 2002-2013, water bodies increased by 0.19 % while declining by -0.13 % between 2013 

and 2020. In contrast, wetlands decreased by -0.31% annually from 2002-to 2013, before 

showing an increase of 4.85% per year. In all three periods, wetlands accounted for the least 

percentage of the area. 

In the GAMA region, developed land cover is increasing at the expense of vegetation 

land. By using the CA-ANN model, LULC transition potentials and simulated maps were 

derived using classified LULC maps and the driving factors such as elevation, slope, distance 

from roads, distance from rivers, and distance from rivers. All of these factors played a 

significant role in LULC changes. While developed areas were increasing across the study area, 
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they did not show much growth where slope and elevation were high. This model’s overall 

accuracy is 78% and it is reliable because its kappa statistic is greater than 0.63. 

After validation, the MLP-ANN algorithm is applied to simulate future transformations in 

2030, and 2040. LULC maps for the corresponding years were predicted using the CA model. In 

the immediate future, the study area is expected to undergo rapid urbanization, resulting in a high 

rate of deforestation with vegetation adjacent to developed areas and those existing in small 

patches will be most vulnerable. 

The study showed that the proportion of pervious to impervious surfaces increased from 

0.68 to 1.76 between 2002 and 2040. Some of the increases in impervious surfaces are likely to 

come at the expense of wetlands. Land-use policies are therefore important in guiding the 

sustainable development of GAMA since they reduce threats to natural resources. It is therefore 

recommended that Ghana’s national and regional governments pay immediate attention to 

GAMA’s spatial growth. These governments should create and enforce regulations on land use 

change because it is the primary cause of disruptions in the environment including wetland 

losses. Planning for efficient land use management can be achieved by using the insights 

provided by this study. 

Based on the simulated distribution of the LULC classes in GAMA in 2030 and 2040, the 

landscape will likely continue to undergo the changes observed in the recent past. These changes 

need to be evaluated in more detail to determine the expected impacts. It is recommended that 

future analyses use more detailed socio-environmental variables to better understand the causes, 

locations, and trends of land use changes in the region. Moreover, future studies should expand 

the study area in order to establish similar trends across the entire Greater Accra region. 
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APPENDIX A FIGURES 

Figure 1. Location of the study area 
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Figure 2. Flow chart of the methodology 



 

  

     

42 

a) b) 

Figure 3. Diagram of CART for LULC. (a) 2002 (b) 2013 (1 - developed; 2 – vegetation; 3 – wetland; 4 – water) 
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a) b) c) 

d) e) 

Figure 4. Spatial drivers. (a) distance from roads, (b) distance from towns, (c) distance from rivers, (d) elevation, (e) 
slope (thresholds were determined using equal distances such as buffered distances  from roads within 1, 2, 3, 4, and 
greater than 5 km) 
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Figure 5. The validation graph between the observed 2020 LULC and predicted 2020 LULC (with kappa and maximum 
percentage of correctness on the y-axis and LULCs on the x-axis; 1 - developed; 2 – vegetation; 3 – wetland; 4 – water) 
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Figure 6. Neural network learning curve 
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Figure 7. Distribution of LULC features in the study area. (a) Year 2002 (b) Year 2013 (c) Year 2020 and 
(d) LULC percentage cover.
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Figure 8. Area percentage change rate for LULC classes for different time periods 
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Figure 9. Statistical comparisons between simulated and observed LULC map for 2020 
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a) b) 

Figure 10.  LULC maps for observed and predicted year 2020. (a) LULC map derived from Landsat images (b) simulated 
LULC map using CA-ANN model 
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a) b) 

Figure 11.  Simulated LULC maps for years (a)  2030 and (b) 2040 
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Figure 12. Annual change rate for future LULC for different time periods 
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Figure 13. Impervious and pervious dynamics from 2002-2040 



 

   

 Acquisition Date  Path/Row  Landsat Sensor  Spatial Resolution (m)  Number of Bands 

 12/26/2002  193/056  Landsat ETM+ 30 7 

 01/06/2013  193/056 Landsat   ETM+ 30 7 

 01/02/2020  193/056 Landsat   OLI 30 9 
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APPENDIX B  TABLES  

Table 1. Properties and characteristics of Landsat images.
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Table 2. Land cover classification scheme. 

LULC Classes Class Description 

Developed Residential, commercial and services, industrial, transportation, roads, mixed urban, and other 
urban, Exposed soils, construction sites, Transportation facilities 

Vegetation Deciduous forest, mixed forest lands, palms, conifer, scrub, cultivated land, crop fields, fallow 
lands, vegetable fields, Forest reserves, Herbaceous vegetation, Shrub and bush areas, Mixed 
grassland with few scattered trees, and others 

Wetland Permanent and seasonal wetlands, inland water bodies, low-lying areas, marshy land, rills, 
and gully, swamps 

Water River networks, canals, and active hydrological features 
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Table 3. Overall and kappa statistics 

Year Overall Accuracy Kappa Coefficient 

2002 0.93 0.91 

2013 0.92 0.89 

2020 0.94 0.92 
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Table 4. Producer and user accuracy for each LULC 

Class 

Developed 

2002 

Producer 
Accuracy 

96 

User 
Accuracy 

97.00 

2013 

Producer 
Accuracy 

97 

User 
Accuracy 

99.00 

2020 

Producer 
Accuracy 

93 

User 
Accuracy 

95.00 

Vegetation 88 91.00 84 91.00 96 95.00 

Wetland 90 86 89 79 88 93 

Water 98 98.00 98 100.00 99 100.00 
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Table 5. LULC changes (km²) and annual rate (%) for different time periods 

Class 2002-2013 2013-2020 2002-2020 DD % between different time 
periods 

Developed 

Δ Area (sq. 
km) 

180.01 

Δ % 

12.75 

Δ Area (sq. 
km) 

14.43 

Δ % 

1.02 

Δ Area (sq. km) 

194.45 

Δ % 

13.77 

2002-
2013 

2.85 

2013-2020 

0.27 

2002-
2020 

1.88 

Vegetation -182.45 -12.92 -39.27 -2.78 -221.72 -15.70 -3.33 -1.78 -2.47 

Wetland -2.82 -0.20 27.21 1.93 24.39 1.73 -0.31 4.85 1.63 

Water 5.26 0.37 -2.37 -0.17 2.89 0.20 0.19 -0.13 0.06 



 

  

 Classes  Developed  Vegetation  Wetland  Water 

 2002-2013  2002-2013  2002-2013  2002-2013 

 Developed  0.926  0.064  0.005  0.005 

 Vegetation  0.416  0.494  0.091  0.000 

 Wetland  0.174  0.400  0.384  0.043 

 Water  0.004  0.000  0.001  0.994 
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Table 6. Transition probability statistics of LULC for 2002-2013 



 

  

 Classes  Developed  Vegetation  Wetland  Water 

 2002-2020  2002-2020  2002-2020  2002-2020 

 Developed 
 0.901  0.068  0.025  0.006 

 Vegetation 
 0.455  0.443  0.102  0.001 

 Wetland 
 0.274  0.203  0.494  0.029 

 Water  0.007  0.000  0.005  0.988 
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Table 7. Transition probability statistics of LULC for 2002-2020 



 

  

 Driver Combination  Percentage of Correctness  Kappa Coefficients 

 Road, River, Town,  Slope  79.10  0.66 

 River, Town, Slope, Elevation  77.83  0.64 

 Road, River, Town,  Elevation  78.67  0.64 

 Road, River, Slope, Elevation  77.93  0.63 

 Road, Town, Slope, Elevation  77.09  0.61 

 Road, River, Town, Slope, Elevation  78.50  0.70 
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Table 8. Different combinations of spatial variables and kappa coefficients 



 

   

 Class  2020  2030  2040  DD % between different time periods 

 Area (sq. km)  Area (sq. km)  Area (sq. km)  2020-2030  2030-2040  2020-2040 

 Developed  768.00  872.39  900.03  1.20  0.32  0.86 

 Vegetation  276.76  198.79  153.75 -3.92 -2.27 -2.22 

 Wetland  107.37  81.99  98.58 -3.10  2.02 -0.41 

 Water  260.14  259.10  259.91 -0.04  0.03  0.00 
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Table 9. LULC distribution for future LULC and estimated annual change rate for 2020-2030,2030-2040 and 2020-2040 
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