DEFORMED ROCKS USING CELLULAR
Bowling Green State University  AUTOMATA APPROACH (MR41A-1850)

SU DETECTING GRAIN BOUNDARIES IN

Peter V. Gorsevskl and Charles M. Onasch

School of Earth, Environment & Society, Bowling Green State University, Bowling Green, OH 43403 USA
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Applying the Moore’s neighborhood

Cellular automata (CA) are widely used and applied in Cellular Automatas (CA) resemble similarity to partial differential equations, but are discrete systems with an
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Here, we explore the application of two-dimensional ave a finite and countable number of states. In this study the properties of the CA are based on a regular
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detection in digital images of thm'seCt'O_ns from CA's with a square shaped neighborhood surrounding the central cell (x,, y,) are defined as von Neumann {
deformed rocks. The automated extraction of neighborhood, Moore’s neighborhood, and extended Moore’s neighborhood. If the color difference between X, y, and its neighbors is greater that the
boundaries, which contain rich sources of information ;hresm'd keep the state of the cell unchanged
such as shape, orientation, and spatial distribution of Apply edge detection rules (i.e., more than three connected cells)
grains involve a CA Moore neighborhood-based rules o = = Move to the next state
approach. The Moore neighborhood is 3 x 3 matrix }
that is used for changing states by comparing SR |
differences between a central pixel and its neighbors.
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depends upon its current state and that of _'tS The cellular automaton is represented by four elements A=(X,S,N,d)
neighbors. The rules that are used determine the where X is the m dimensional space of each cell x=(x,, X, Xs, .., X..) TR
future state of each cell (i.e. dead or a”\/e) while the S Is a nonempty finite set where cells can take only one state at any time from a set of states 4
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number c_)f iterations to S|mulate_boundar|es detection 5 is the state transition function rule teration 17
are specified by the user. Each iteration outputs
different detection scenarios of grain boundaries that Results and comparison with manual-digitized grain boundaries
can be evaluated and assessed for accuracy. The
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have the highest lat th oundary through edge detection analysis.
against traditional a manual dlgltlzatlon appr(_)aCh and ﬁrearlgigﬁgn&agﬁj 12\??omethégc,eb\ssi(r:r?tzlr§ts):f\0n W four simulations which applied different detection rules. For Simulation 1. All the parameters show high correlations,
a recent GIS-based method developed for this ' instance the first plot (Simulation 1) represents Iteration 12 but the highest is associated with the X and Y centroids.
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