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ABSTRACT 

 

Peter Gorsevski, Advisor 

 

This paper presents a spatial decision support system (SDSS) framework for evaluating 

the suitability for wind farm siting in Northwest Ohio. It is intended for regional planning but 

also for promoting group decision making that considers different participants in the 

development of decision alternatives. The framework integrates environmental and economic 

criteria and builds a hierarchy for wind farm siting using weighted linear combination (WLC) 

techniques and GIS functionality. The SDSS allows multiple participants to develop an 

understanding of the spatial data and to assign importance values to each factor. The WLC 

technique is used to combine the assigned values with map layers, which are standardized using 

fuzzy set theory, to produce individual suitability maps. The maps created by personal 

preferences from the participants are aggregated for producing a group solution using the Borda 

method. Sensitivity analysis is performed on the group solution to examine how small changes in 

the factor weights affect the calculated suitability scores. The results from the sensitivity analysis 

suggest that the economic objective is more sensitive than the environmental objective while 

population density and land use were the most sensitive factors. 
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Introduction 

A growing number of regional problems driven by social, cultural, and environmental 

forces require assistance of spatial decision support systems (SDSS) for enhancing variety of 

management solutions (Bone and Dragićević, 2009; Barkan et al., 2006; Jankowski et al., 2006; 

Nyerges et al., 2006; Jankowski, 2000; Jankowski et al., 1996). There are many examples where 

SDSS are used to resolve issues of locally unwanted land uses that involve “not in my back 

yard” (NIMBY) controversies including the siting of municipal solid waste facilities (Chiueh et 

al., 2008; Kontos et al., 2003), construction of road infrastructures in a metropolitan area (Bana 

and Carlos, 2001), nuclear waste disposal (Evans et al., 2004), urban regeneration projects 

(Horita, 2000), stream  restoration (Corsair et al., 2009), and watershed management 

(Ramanathan et al., 2004; Bender and Simonovic, 2000). However, the need of SDSS tools is 

much greater when problems emerge from developing industries such as renewable energy 

where planners are unable to identify important elements and establish relevant theories for the 

problems they are trying to solve. 

Planning of new wind energy farm sites is one of the problems that requires combination 

of diverse planner backgrounds for resolving conflicting interests and views for achieving a 

single decision goal acceptable to multiple planners (Simão et al., 2009; Gamboa and Munda, 

2007; Kaldellis, 2005). Although the United States has been steadily ramping-up the amount of 

wind energy production (Swofford and Slattery, 2010; Bolinger and Wiser, 2009), wind farm 

development is often confronted with strong opposition throughout the country. For example, in 

Nantucket Sound, Massachusetts, a proposed offshore wind farm that would provide three-

fourths of the electrical needs for the region is strongly opposed by residents along the shoreline 

who fear that the turbines would obstruct the view from their property and decrease property 
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values (Kempton et al., 2005). The proposal is still entangled in debate and no turbines have 

been installed. The turbines constructed in the San Gorgonio Pass, California, faced intense 

public resistance when they were proposed for development and are still blamed for their affects 

on the desert landscape (Pasqualetti, 2001). Wind turbines in Altamont Pass, California are 

criticized for the number of avian deaths caused by the turbines and for the open space 

development (Rodman and Meentemeyer, 2006).  

Evaluating suitable locations for wind energy is a difficult undertaking as different 

planners and decision-makers value interests and priorities differently. For instance, variations 

among decision-makers opinions exist in the choice of important criteria and their relative 

importance for solving the problem. Different decision-makers will likely place different values 

on the criteria and use information in different ways (Dye and Shaw, 2007). Some examples of 

conflicting criteria involved in the selection of wind farm locations include: landscape aesthetics 

(Swofford and Slattery, 2010; Wolsink, 2007; Jobert et al., 2007; Ek, 2005; Warren et al., 2005; 

Begoña and Hanley, 2002), turbine noise (Aydin et al., 2010; Wolsink, 2007; Devine-Wright, 

2005) avian deaths (Aydin et al., 2010; Farfán et al., 2009), and shadow flicker (Harding et al., 

2008; Baban and Parry, 2001). While there are clear challenges with the choice and relative 

importance of conflicting criteria, improvements of SDSS frameworks that can support conflict 

resolution and promote consensus among planners are necessary for the decision making 

process. 

SDSS are explicitly designed to help decision makers solve complex problems by 

coupling analytical multiple criteria evaluation (MCE) models and Geographic Information 

Systems (GIS). MCE models provide a system for choosing and rating decision criteria, and for 

developing and evaluating decision alternatives. A GIS is commonly defined as a set of tools for 
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the input, storage, manipulation and analysis, and output of spatial data. Such frameworks have 

been used in several studies to analyze site suitability for wind turbines (Baban and Parry, 2001; 

Rodman and Meentemeyer, 2006; Tegou et al., 2010; Aydin et al., 2010; Janke, 2010). Some of 

these frameworks have used the MCE approach of weighted linear combination (WLC) to 

develop suitability scores over the study area. With WLC, the decision maker assigns relative 

importance values to each criterion in the analysis. These values are multiplied by standardized 

map layers representing the suitability of the criteria at that location. A total score is calculated 

by summing these products over each location (Malczewski, 1999). 

Fuzzy set theory (Zadeh, 1965; 1978) is often used for criteria standardization before it is 

combined with WLC methods (Gorsevski et al., 2006; Gorsevski and Jankowski, 2010; Comber 

et al., 2010). Standardization is the process of rescaling original data values from different 

criterion map layers to comparable units. The standardization of raster GIS-based criteria assigns 

a value between zero and one to each grid cell using a fuzzy membership function. Fuzzy set 

standardization not only aims to transform different decision criteria into comparable units, but it 

is also used to manage decisional uncertainty inherent in spatial decision making (Malczewski, 

1999). The planning of new wind farm sites requires the consideration of criteria that involve a 

high degree of uncertainty and imprecision. Also, value judgments from decision makers on the 

relative importance of the criteria will involve high levels of uncertainty and ambiguity. Fuzzy 

set theory coupled with WLC approaches can help support the decision process of wind farm site 

selection. 

Although the existing SDSS frameworks have incorporated fuzzy standardization 

techniques and WLC methods to analyze site suitability for wind farms, very few methods have 

used multiple participants in the decision process. Such methods are aimed to address the need 
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that different participants will likely perceive the importance of the criteria differently and 

produce unique decision alternatives. As citizen (stakeholder) participation in environmental 

decision making increases, the number and variety of unique alternatives will also increase. 

Environmental decisions are often influenced by a wide range of stakeholder agendas, making it 

more difficult to achieve acceptance for a final solution (Shmoldt and Peterson, 2001). A model 

that promotes collaboration among participants can be used to build consensus and derive a 

solution with minimal conflict that maybe more equitable with lasting outcomes.  

Collaborative spatial decision support system (CSDSS) is one of the SDSS frameworks 

that implements interactive group-based modeling using multi-criteria decision making methods 

and GIS (Armstrong and Densham, 1995). CSDSS addresses the need for group participation in 

spatial decision making. Such modules have been used in problems that require collaborative 

decision making techniques such as wetland planning and management (Goosen et al., 2007), 

restoration management (Jankowski, 2000), water resource administration (Nyerges et al., 2006), 

transportation improvement projects (Nyerges et al., 1997), habitat restoration (Jankowski and 

Nyerges, 2001b), urban green space development (Balram and Dragićević, 2005) and natural 

resource allocation (Dragićević and Balram, 2004). Simão et al. (2009) used a CSDSS to analyze 

site suitability for wind farms in the United Kingdom. Their framework supports asynchronous 

collaboration among multiple participants via the internet. Several decision factors are grouped 

into larger criteria sets, and participants use a rating technique to assign importance values to 

these sets. The results from all participants can be seen in an argumentation map and dialog 

among participants is promoted through a discussion board. However, the contribution of this 

work is aimed in the support of participant learning during the planning process through 

distributed collaboration among participants.  
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The presented approach builds upon previous SDSS framework ideas and presents a 

hierarchical structure of group decision making process that considers different hierarchy levels 

including a clear goal, constraints, objectives or criteria and factors. The proposed SDSS 

framework for wind farm site suitability analysis is intended for regional planning in Northwest 

Ohio but also for promoting a group decision making that considers different participants in the 

development of decision alternatives. The framework integrates environmental and economic 

criteria and builds the hierarchy for wind energy farm siting using WLC techniques and GIS 

functionality. Continuous spatial layers related to wind farm siting, which have been 

standardized using fuzzy set theory, are included as decision factors in the analysis. The SDSS 

allows multiple participants to examine and develop an in-depth understanding of the spatial data 

and assign importance values to each factor. The WLC technique is used to combine the assigned 

values with the standardized map layers to produce individual suitability maps. The maps created 

by personal interpretation and preferences of each participant are later aggregated for producing 

a group solution using the Borda method. The results of this methodology are illustrated through 

an experimental decision scenario discussed in Chapter 1. Chapter 2 describes the SDSS tool 

used in the experiment. Chapters 3 and 4 contain the results and discussion. 
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1. Wind Farm Site Suitability Decision Scenario 

 This section provides an overview of the case study of wind farm site suitability analysis 

in Northwest Ohio. The research, which is a prototype of a collaborative spatial decision 

problem, served as a context for the implementation of the SDSS analysis. Multiple participants 

with different judgments on the importance of decision criteria for wind farm siting were tasked 

to evaluate suitable locations for wind farm development. The following describes the case study 

design; including the study area, materials, and composition of the study group.  

1.1 Study Area 

 The study area is a 27-county region in Northwest Ohio (Figure 1) with relatively high 

winds throughout the year. A wind resource assessment conducted at 50 m heights by the 

National Renewable Energy Laboratory (NREL) suggests that the region has sufficient annual 

wind speeds to support large scale wind farms (NREL, 2004).  The glaciated topography of this 

region has few natural obstacles to wind movement in the area (Elliot et al., 1987). Prevailing 

northerly and westerly winds are the most dominant across the region. The coastal areas of Lake 

Erie are associated with the strongest winds in the area and within Ohio with annual average 

speeds of 7.0 to 7.5 m/s while the rest of the area has annual average wind speeds of 5.6 to 6.4 

m/s.  

The extensive wetlands in the region provide vital habitats for many birds and other plant 

and animal species. Bird habitats and migratory bird routes are of special concern in the area. 

There are sixteen locations in the region identified as Important Bird Areas by the Ohio Audubon 

Society (2009). The endangered Indiana Bat (Myotis sodalis) is found in every county in the 

study area (U.S. Fish and Wildlife Service, 2009).  
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The demand for energy in the area comes from the estimated 1.8 million people, or about 

16.4 % of the state population (U.S. Census Bureau, 2009) The industrial sector accounts for 

more than one-third of electrical consumption in the state while the residential sector accounts 

for nearly one-fourth of electricity used, with nearly one-fifth of households relying on electricity 

for home heating (USEIA, 2010).  Ohio's alternative energy portfolio mandates that by 2025, at 

least 25 percent of all electricity sold in the state must come from alternative energy sources and 

one half of this electricity must be produced in the state (USEIA, 2010). In the study area, the 

city of Bowling Green has a total of four 85 m tall utility-scale wind turbines which generate 7.2 

MW of power. In addition, the Ohio Power Siting Board, the agency that administers permits for 

wind farm development, has approved six new wind farm projects in the study area which will 

support a total of 501 turbines with approximately 900 MW capacity (OBSP, 2011). The 

potential for more wind energy in the state is also promising; according to a study conducted by 

the NREL, Ohio has adequate wind resources to potentially install 55 GW of onshore wind 

power (NREL, 2010). Offshore wind energy is also viable because a total of four counties have 

shoreline on Lake Erie within the study area. The first offshore wind farm to be installed in the 

Great Lakes is set to begin construction in Lake Erie, near Cleveland, Ohio, in 2012 (Gallucci, 

2011).    

1.2. Wind farm site selection factors 

Site selection of a wind farm requires consideration of multiple criteria and evaluation 

steps to identify the best possible location and to minimize or eliminate obstacles to wind power 

development (e.g., visual intrusion, shadow flicker, turbine noise). Figure 2 shows the 

hierarchical structure of the decision process. It contains four levels; a goal, constraints, 

objectives or criteria and factors. The first level represents the ultimate goal of the suitability 
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analysis. The second level represents constraints which limit the possible areas that can be 

considered in the suitability analysis. The third level represents the multi objective nature of the 

decision process. The first objective involves satisfying criteria that pertains to, and protects, the 

environment and the second objective considers economic factors related to wind farm siting. 

Each objective requires a number of factors which are represented in the last level in the figure. 

A detailed description of these factors is given below. 

1.2.1 Environmental factors 

Wind speed 

 Wind speed is a crucial factor in determining the best location for new wind farms. 

Energy output of wind turbines increase as wind speeds increase until nominal wind speed is 

reached, which is the speed that maximizes the energy production. Therefore, areas classified 

with higher wind speeds are more suitable than areas classified with lower speeds. 

The wind data set that measures annual average wind speed at a 50 m height and 

produces wind speed maps at 200 m horizontal resolution was acquired by TrueWind Solutions 

and validated by the NREL (NREL, 2009). The data is partitioned in four categories of annual 

average wind speeds classified by the NREL from poor (1) to good (4).  The description of the 

categories indicate that areas designated as Class 3 or higher are suitable for utility-scale wind 

development. Class 2 speeds can be considered suitable, especially in rural areas where the 

topography is flat and there are no obstacles. Areas designated as Class 1 are not considered 

suitable, but the degree of certainty of which the wind power class can be specified depends on 

factors such as the complexity of the terrain and the variability associated with wind resources 

(NREL, 2004).  Also, data collected at different heights other than 50 m may classify some areas 

designated as Class 1 into higher wind speed classes. In this project, the data was imported into a 
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GIS, converted to a raster format, and resampled to 30 x 30 m cell size. Figure 3(a) shows the 

standardized wind speed data layer which used membership values assigned to each wind class 

shown in Table 1.  

Distance to Important Bird Areas 

 An environmental impact assessment for new wind farms mandates the inclusion of 

potential threat to local wildlife. The importance of bird assessment is intended to minimize 

collisions and mortality by birds and bats with operating wind turbines.  The threat that wind 

farms pose to the health and safety of bird populations is an issue routinely brought up in the 

planning phase of wind farms. A major concern is avian collisions with the turbines near bird 

habitats and migratory routes and the change of air pressure around the wind turbines that is fatal 

especially for bats. Studies have shown that other man-made features such as power lines, 

skyscrapers and automobiles kill far more birds than do turbines (Devereux et al., 2008; 

Sovacool, 2009; Farfan et al., 2009). Nevertheless, the potential threat to birds is an issue that we 

have decided to address in this study example.  

The Ohio Audubon Society has identified a total of 16 locations in the study area as 

Important Bird Areas (IBA). An IBA is defined as an essential habitat that one or more avian 

species use during their nesting season, the winter, and/or while they are migrating (Ohio 

Audubon Society, 2009).  A digital map published by the Ohio Audubon Society in 2006 

(1:2,000,000) that depicts all the IBAs located in the state was imported into GIS and the 

boundaries of each IBA in the study area were digitized to a new data layer. The distances from 

IBAs were calculated using Euclidean distance functions that measure the straight-line distance 

from each cell to an IBA. Table 1 shows that a linear increasing fuzzy function was used to 

standardize the distances. The first control point (a = 5,000 m) indicates the least suitable 



10 
 

distance and the second control point (b = 30,000 m) and beyond indicates the most suitable 

distances for siting new wind farms (Fig. 3(b)). 

Land Use 

 Although individual wind turbines have a relatively small footprint on the land, a concern 

surrounding wind farms is the impact on land related to the construction and operation of the 

turbines. A study published by the NREL (Denholm et al., 2009) examined the amount of land 

impacted by utility-scale wind farms on different types of land uses. The study showed that wind 

farms located on the same land use are often associated with the same layout configurations, and 

the layout of the turbines correlates with how much land is permanently impacted. The study 

suggested that wind farms located on cropland, pasture, and shrub impact less amount of land 

than grassland and forestland. For instance, installation patterns such as parallel string 

configuration is often used in grassland and that is not the case in forested areas where clearing 

for access roads, turbine pads, and set back areas around each turbine is required (Denholm et al., 

2009). 

The US EPA's Multi-Resolution Land Characteristics Consortium (MRLC) developed 

land cover data primarily from Landsat TM imagery acquired in 2001 based on Anderson's 

classification system (Anderson et al., 1976). This data was imported into GIS and the classes 

representing different levels of land use suitability were extracted into new data layers. Classes 

representing cropland, pasture, shrub land, or barren land are considered the most suitable land 

cover. Grassland and forested land represent moderately suitable land cover. Classes such as 

developed areas, open water, and wetlands are considered constraints in this analysis and 
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represent the least suitable land cover (Fig. 3(c)). Table 1 shows the membership values assigned 

to each of the land use categories used here.  

1.2.2. Economic Factors 

Proximity to Major Transportation 

The proximity to major transportation infrastructure is essential step in the planning 

process because transportation of oversized turbines can be complex and costly. For instance, 

tower sections for the common 80 m turbine can weigh more than 70 tons, be 36 m long, have a 

diameter of 4.5 m, and have blades that can range between 33 to 44 meters in length (AWEA, 

2009). Often, these components must be transported as single pieces, thus requiring large 

equipment for shipment. Small residential roads cannot easily support the size and weight of 

such components and may have inadequate turning radii for bringing the turbine components to 

the site. Railroads is another transportation alternative but often roads are still required to carry 

the turbines from the railroads to the project site. The distance from the potential wind farm site 

to major roads or railroads should be minimized to lower costs by making the transportation of 

wind turbines as efficient as possible. 

 The road transportation dataset used in this study was produced by the USGS (1999) and 

considers interstates, and US or state routes while the railroad data was produced by the National 

Atlas of the United States (2005) (1:2,000,000). The major road and the railroad layers were 

combined to create a major transportation layer. The distances from major transportation were 

calculated using a Euclidean Distance algorithm and then the distances were standardized using a 

two point linear decreasing function (a = 1,000 m, b = 10,000 m). Distances less than 1,000 m 

were assigned a membership value of 1 (the most suitable) and distances greater than 10,000 m 
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are assigned a membership value of 0 (the least suitable). Figure 4(a) shows the standardized 

data layer. 

Proximity to Transmission Lines 

 The proximity to high-voltage transmission lines is important consideration for wind 

farm development for minimizing the cost of delivered electricity to the consumer. At present, 

wind power developers have used regions with high wind resources that are close to adequate 

transmission line capacity and where transmission costs are low to develop. Siting a wind farm 

where transmission lines are lacking will require new transmission lines to be installed, which 

will increase the costs associated with wind farm development. 

Existing transmission line data was digitized from a map produced by TrueWind 

Solutions and published by the NREL in 2004 (1:2,000,000). The data depicts the locations of 

existing transmission lines in the study area that can potentially be used to manage the energy 

created by a wind farm. The minimum capacity of the transmission lines found in the study area 

is 100 kV and the maximum is 735 kV. The data was generalized to a single layer. A distance 

function was also used to calculate distances from transmission lines. This was standardized 

using a linear decreasing function with two control points (a = 1,000 m, b = 20,000 m). Distances 

less than 1,000 m are given a membership of 1 and distances greater than 20,000 m are assigned 

a membership of 0 (Fig. 4(b)). 

Soils 

 Different types of soils can affect the installation costs of a wind farm. If a potential wind 

farm location does not contain soil that can adequately support large structures like wind 
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turbines, costly measures will be needed in order to do so. This can include the removal and 

replacement of poor soil and the installation of deep foundation supports onto underlying 

bedrock (Fitzpatrick, 2010). Soils that are characterized by high contents of gravel and sand can 

better support large structures than silt and clay soils. Soils containing high organic matter are 

the least suitable for large structures (Terzaghi et al., 1996).  

The SSURGO (Soil Survey Geographic database) data produced and distributed by the 

Natural Resources Conservation Service (NRCS) and National Cartography and Geospatial 

Center (NCGC) was used in this analysis (USDA, 1994). It depicts multicounty-level soil 

compositions across the country. The attribute information contains classifications that coincide 

with the Unified Soil Classification System, a system used in engineering and geology to 

describe texture and grain size (ASTM, 1985). Using this classification system, the data can be 

categorized into one of five groups based on composition; gravel, sand, silt and clay with a liquid 

limit less than 50 percent, silt and clay with a liquid limit greater than 50 percent, and highly 

organic soils. Liquid limit refers to the water content at which soil changes from a plastic to a 

liquid behavior. The membership values assigned to each type is presented in Table 1.  The 

higher the membership value, the more suitable that soil type is for a wind farm. The 

standardized data layer is shown in Figure 4 (c). 

Population Density 

 Areas of higher population density require more energy than areas of lower densities. It 

becomes an important economic factor, therefore, to locate a wind farm near areas with high 

population densities so the energy produced from the farm can quickly be transferred to areas 

that have the highest energy demand. Energy produced from wind farms located near high 
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population densities will have a shorter distance to travel and will depend on fewer transmission 

lines to transfer the energy, thus reducing the cost of supplying the energy to consumers. 

Population data was acquired from the National Atlas of the United States dataset. It depicts 

cities in the United States as vector point data with associated population figures from the 2000 

US Census. A kernel density function with a bandwidth of 20 km was used to calculate the 

density of population around each output raster cell. The population attribute was used to assign 

a greater influence to the cities that had a higher population. A linear decreasing function was 

applied to the kernel density output using two control points (a = 200, b = 20). Densities greater 

than 200/km2 are given a membership of 1 and densities lower than 20/km2 are given a 

membership of 0.  Figure 4(d) shows the standardized data layer. 

1.3 Study Group 

 The study group comprised of 30 undergraduate and graduate students participants from 

Bowling Green State University. A one-hour facilitated presentation was given prior to using the 

SDSS prototype that included a background on the decision problem and current wind energy 

issues and operation in Northwest Ohio; a summary of each decision factor, why it was included 

in the decision process, and how the values were standardized; and instructions on how to use the 

decision tool. Participants were encouraged to ask questions at any time during the presentation 

and while they were using the model. Each participant was assigned a computer to complete the 

exercise independently. Roughly one hour was allotted to complete the task. The participants 

could run the model as many times as desired until they were satisfied with a result. They were 

instructed to select one output and submit it as their final decision alternative. 
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2. Spatial Decision Support Tool 

 The SDSS prototype used in this research was developed within ESRI's ArcMap (9.3) 

user interface using custom Visual Basic for Applications (VBA) code. The intention of the 

prototype was to provide an easy-to-use interface of which even non-experienced GIS users 

could examine spatial data and convey their judgments on what aspects they think are important 

to wind farm siting in Northwest Ohio.  A description of the user interface is given, as well as an 

explanation of how the model calculates suitability scores based off users values. The Borda 

method, which is the technique used to develop weights based on the ranking of the factors is 

presented also. Sensitivity analysis, which examines how small changes in factor weights affect 

the results, is discussed as well. 

2.1 User Interface 

The user interface comprises of a set of steps and inputs that are organized by the 

presented hierarchy levels to build up the SDSS model (Fig. 5). The individual decision process 

starts with the examination of spatial data related to wind farm siting in Northwest Ohio. The 

main purpose of this step is to acquaint the participants with the farm siting problem and to 

develop an in-depth understanding of factors and constrains that should be taken in consideration 

when developing a wind farm. Users select radio buttons that activate and expand corresponding 

data frames in the table of contents to explore the data. These data frames contain layers related 

to each decision factor that users can turn on and off (Fig. 5(a)). In the second step, users choose 

which, if any, constraints to include in the analysis (Fig. 5(b)). If a constraint is included, then 

the pixels classified as that constraint will be excluded from the analysis. Following the selection 

of constraints, the participants are prompted to select their preference for inclusion of 
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environmental factors and to assign importance values based on a personal interest and 

understanding of the decision problem. This is done using slider bars, with values ranging from 0 

to 100, with an associated text field that displays the exact value of the slider bar. A value of 0 

means the factor is not important, and a value of 100 indicates the factor is very important. Also 

included on this window is a button that opens a help file containing brief descriptions and 

justification on why each environmental factor is included in the analysis. Buttons linked to each 

factor that activate the corresponding data frame in the table of contents are also built-in to this 

window (Fig. 5(c)). The next step is the selection and assignment of importance values to the 

economic factors that is accomplished by slider bars. This window also contains a button that 

opens a help file containing brief descriptions on the importance of the economic factors in the 

analysis. Each window in the SDSS model includes a “Back” button that allows the users to 

return to the previous window at any time and change the values. In the last step of the decision 

process, users indicate which set of criteria they think is more important to the overall decision. 

A slider bar is displayed with the text “Environmental Criteria” on one end and “Economic 

Criteria” on the other. The initial value of the slider bar is set to 50, which indicates equal 

importance for both criteria. The closer the slider bar is to 100 in either direction indicates higher 

level of importance for that set of criteria over the other (Fig. 5(e)). Clicking “Submit” on this 

window initiates the calculation of suitability scores.  

2.2 Calculation of Suitability Scores 

The WLC method is used to calculate the suitability score for each location (30 m cell) in 

the study area. The scores of the environmental and economic criteria are calculated 

independently, using equation 1: 
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 (1) 

where Vi is the suitability index for cell i, wj is the relative importance weight of criterion j, vij is 

the assigned value of cell i under criterion j, and n is the total number of criteria. The outputs 

from the SDSS include three data layers that are created and displayed in ArcMap: an 

environmental layer solution showing the suitability considering only the environmental factors, 

an economic layer solution showing the suitability considering only the economic factors, and a 

combined suitability layer that aggregated the two. A green-to-red color legend is automatically 

applied to each layer, with the green areas representing low suitability scores and red 

representing high suitability scores. For obtaining the group solution a text file is created by each 

participant that includes the values assigned to each factor and the values assigned to each set of 

criteria. 

2.3 Borda Count  

A  Borda count method is used in this analysis to determine the collective rank, and 

relative importance of each decision factor based on values assigned by the participants. The 

values are used to determine the rank of each decision factor for each participant. For example, if 

a participant assigns a higher value to wind speed than to land use, then wind speed is assigned a 

higher rank on that participant's ballot, regardless of the difference in values between the two. 

The Borda count is a positional voting system devised by the 18 th century French mathematician, 

Jean Charles Borda (Munda, 2008). The Borda method assigns points to each factor 

corresponding to the position in which it is ranked by each participant. For a set of n decision 

criteria, n-1 points are given to the most preferred factor, n-2 points are given for the second 

most preferred, down to zero points for the least preferred factor. The individual preferences of 
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the participants can be aggregated into a group preference by summing the total number of points 

for each factor. The factor with the highest total Borda score is considered to be the most 

important.  The importance of Borda's aggregation is that prevents a contentious participants 

who rank some factors very high and some very low from dominance and promotes a consensual 

solution. The Borda method has been applied to evaluate decision alternatives in similar multi-

criteria analysis involving multiple participants in the fields of habitat restoration (Jankowski, 

2000), strategic forestry planning (Hiltunen, et al., 2008), ecological risk management (Fanghua 

and Guanchun, 2010), and natural hazard decision making (Chen, et al., 2001).  

 In this study, the Borda scores for the environmental factors are calculated independently 

from the economic factors. Therefore, environmental factors are ranked from 2 to 0, and 

economic factors are ranked from 3 to 0. The scores are standardized by dividing a factor's 

Borda score by the total Borda score for that set of criteria. The result can be used as the relative 

importance weight for that factor.  

2.4 Sensitivity Analysis 

Uncertainty is often involved in multi-criteria decision making due to many different 

reasons such as the inability for decision-makers to provide precise judgments relative to the 

importance of decision factors. The uncertainty can also be attributed to limited or imprecise 

information about the decision problem and to inconsistency involved in the decision-makers 

preferences (Malczewski, 1999). Sensitivity analysis is often used to deal with this uncertainty 

and to assess the reliability of the method involved in identification of the highly suitable areas. 

A small perturbation in the decision weights may have a significant impact on the solution. Thus, 

the sensitivity analysis is conducted on the solutions where the decision weights are 
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systematically varied to investigate the relative impacts of the weights on the suitable areas. A 

range of weight deviations is applied to each factor weight and altered by a small increment 

throughout this range. All other factor weights are adjusted proportionately to satisfy the 

requirement that the weights sum to 1.0. The total number of simulation runs required for a 

decision participant is calculated using equation 2: 

 

(2) 

where m is the set of criteria, and ri is the number of increments within the feasible weight range 

for criterion i (Chen et al., 2009). For example, in this paper a ±10 % weight range with 1 % 

increment was applied to seven decision factors and two objectives.   
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3. Results 

Fig. 6 shows the results from the study group who evaluated the factors and the 

objectives. The factors for the environmental objective are wind speed (WS), important bird 

areas (IBA) and land use (LU) while the factors for the economic objective are proximity to 

major transportation (PTp), proximity to transmission lines (PTm), soils (S) and population 

density (PD). Fig. 6 (a) shows that participants considered wind speed as the most important 

environmental factor, followed by land use and distance to IBA which contains two very 

opposite views from the rest of the group (two outliers). On the other hand Fig. 6 (b) shows that 

proximity to transmission and proximity to transportation are the two highest-valued economic 

factors, with proximity to transmission valued slightly higher than proximity to transportation 

followed by population density and soil. Fig. 6 (c) shows that the participants considered the 

economic objective as more important than the environmental objective.  

Fig.7 shows group solution for wind farm site suitability generated by the Borda method. 

Fig. 7 (a) is the solution obtained from the environmental factors, (b) is the solution obtained 

from the economic factors, and (c) is the weighted aggregation of the environmental and 

economic objectives. The aggregation output shown in (c) used a weight of 0.47 for the 

environmental criteria and 0.53 for the economic criteria. The weights used here represent the 

average values assigned by the participants to each objective. The Borda weights that were used 

in the calculations are shown in Table 2.  The most suitable locations for a wind farm in Fig. 7 

(a) are non-urban areas located far from IBAs and where wind speed is 5.6 m/sec or greater. The 

most suitable locations in Fig. 7 (b) are urban areas with high population densities and areas 

closer to existing transmission lines and transportation routes. The legends in the figure represent 

a measure of wind farm suitability where possibility is expressed on a scale range between 0 and 
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1. In the figure, the percentage of area is categorized by suitability in terms of fuzzy membership 

values. For example, the percentage of area with high suitability scores between 0.8 and 1 is 

shown in the pie charts where solution obtained from (a) classifies 29.4 % and (b) classifies 1.5 

%. It is interesting to note that the environmental factors in this case study are associated with 

much higher suitability than the economic factors but this is flexible and can change as new 

factors or criteria are added or modified.   

The aggregated decision map in Fig. 7 (c) shows that 2.4 % of the total area has high 

suitability scores between 0.8 and 1.0 for wind farm siting but this decision map also classifies 

78.3 % of the total area with suitability scores between 0.6 and 0.8. Most of the areas having 

high suitability scores are located near high population densities; however, there are some in 

areas with low population densities. These areas are characterized by close proximity to both 

transportation and transmission lines, and where wind speed is at least 5.6 m/s. It is interesting to 

note that the suitability calculated for the existing wind farm in the city of Bowling Green is 

between 0.6 and 0.8. The suitability calculated for the areas that have been approved for wind 

farms by the OPSB (2011) range between 0.4 and 1.0, with 1.6 % of the approved areas having 

suitability between 0.8 and 1.0; 83.3 % between 0.6 and 0.8; and 15.1 % between 0.4 and 0.6.  

Fig. 8 shows the results from the sensitivity analysis for the most suitable areas with 

scores ranging between 0.8 and 1.0 for the environmental and the economic factors as well as the 

objectives. Fig. 8 (a) shows that environmental objective is the most sensitive by changing the 

weight of the land use factor. When land use weight is decreased by 10 % a total of 1.5 % of the 

area is classified as highly suitable while when the weight is increased by 10 % a total of 3.2 % 

becomes classified as highly suitable. The least sensitive environmental factor is the wind speed. 

Fig. 8 (b) shows that the high suitability areas are the most affected by population density 
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weights. For example the figure shows that high suitability areas increase 11 % when the 

population density weight is decreased by 10 % and high suitability areas decrease to less than 1 

% when the weight is increased by 10 %. However the decrease in population density weight is 

more sensitivity than the increase in population density weight. At this point it is unclear the real 

cause for this sensitivity but it may be driven by the density function and the bandwidth used for 

the creation of the population density layer or other scale related issues from the layers used in 

the analysis.  The least sensitive economic factor is the proximity to transportation.  

Fig. 8 (c) shows that the percentage of area of high suitability increases when the 

environmental weight increases or when the economic weight is decreases. This percentage of 

high suitability decreases when the environmental weight decreases or when the economic 

weight increases. However, these results are mostly driven by the fact that environmental factors 

have much higher suitability than the economic factors as shown in Fig. 7 (a) and (b). Applying 

more restrictive standardization control points to the factors or adding other factors will yield 

different outcomes from Fig. 8 (c).  

The spatial change in areas of high suitability (0.8 to 1.0) from Fig. 8 is shown in Fig. 9. 

The change of high suitability areas is represented as the difference between simulation maps 

from the sensitivity analysis. The “no change” areas in the legend are the locations which were 

suitable and did not change throughout the simulation and the “change” areas are the locations 

that have changed throughout the simulation at least one or more times. Much of the change in 

highly suitable areas occur in or near the same locations for each factor, with the notable 

exception of population density (Fig. 9 (g)), which shows the greatest amount of change among 

any of the factors. Also it is interesting to note that the changes in the figure appear to be located 

mostly at the fuzzy boundaries which transition from full membership to non-membership.    
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4. Discussion 

The sensitivity analysis suggests that the suitability scores are most affected by the 

changes in the weights of some factors. For example, for the environmental criteria the most 

sensitive factor is the land use that affects a total of 1.8 % of the high suitability area while the 

influence of change from wind speed and important bird areas is less than 0.8 %.  For the 

economic criteria the most sensitive factors is the population density and the least sensitive is the 

soils factor. The population density affects a total of 8.4 % of the high suitability area while the 

soils factor affects a total of 1.8 %. For instance, in the standardized population density layer a 

significant portion of the study area is classified with low suitability scores. The majority of the 

study area is rural; therefore, the suitability in regards to population density is poor. Decreasing 

the influence of population density on the overall solution will allow the areas having low 

suitability to have a higher overall suitability score. Additionally, if the weight of the population 

density layer is increased, areas with low population densities will have low overall suitability 

scores even if they are characterized by high suitability in other layers. The percentage of area 

classified as having high suitability increases when the weights of transportation or transmission 

lines increase, and it decreases when the weights of soil or population density increase. 

Thus, factors with high scores and weights can compensate for low scores from other 

factors but when scores are low while the weights are high factors can only weakly compensate 

for the poor scores from other factors. Malczewski (1999) notes that factors associated with high 

importance weights are the most likely candidates for sensitivity analysis. Since the weights of 

such factors are high, even slight changes can result in large changes in the output. This concept 

is important because manipulating a large number of factors for sensitivity analysis results in a 
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large number of iterations, and the results may be difficult to interpret. Recognizing which 

factors are most prone to sensitivity analysis can save time during the decision process. 

The confidence of the decision maps with high suitability areas can be examined spatially 

using the sensitivity results. For instance, Fig. 9 depicts the changes associated with the 

manipulation of the factor weights. When deciding on locations for a wind farm, decision makers 

should be cautious of the areas that are prone to rapid changes influenced by weights such as 

from poorly ranked factors. In multi-criteria decision making, it must be understood that 

uncertainty is inherent in the assignment of importance weights by the participants. Therefore, 

one cannot be completely certain in the weights used to calculate suitability. Identifying 

locations or alternatives that are susceptible to slight changes is important in the decision making 

process to ensure that the best possible solution is implemented.   

 

 

 

 

 

 

 

 

 



25 
 

5. Conclusion 

 This study presents an application of a GIS-based multi-criteria evaluation approach that 

uses opinions from multiple participants for assessing wind farm site suitability in Northwest 

Ohio. The group-based SDSS was developed and implemented with a total of 30 student 

participants who used the system to assign importance and attribute weights to environmental 

and economic decision factors. The selection of participants was exploratory for highlighting the 

strength of this technique but there are many different participant models that can be 

implemented such as representation of major interest positions (citizen advisory), a random pool 

of citizens (citizen juries), on the basis of being affected by the decision (citizen initiatives) and 

on showing interest in the problem (Dutch study group). The assigned factor weights by 

individual participants used the Borda method for ranking and for generating group weights 

which were used for consequent WLC aggregation and generation of wind farm suitability 

scenario.  

The sensitivity methods used in this study are a small fraction of the possible sensitivity 

analysis techniques that can be applied to the results, each of which could possibly produce 

different outcomes. In the SDSS prototype the participants assigned importance values to 

decision factors using slider bars but other more simplified tools can be also implemented. For 

example, participants could use a ranking user interface that may be more consistent with the 

participants inputs and reasoning. For instance, ranking modules for assigning weights have been 

implemented for direct pairwise comparison between alternatives (Jankowski et al., 1996; Reza, 

2005) or for conversion of fuzzy linguistic terms (i.e., low, medium, high) for providing a precise 

numerical judgment with respect to the alternatives (Boroushaki and Malczewksi, 2010).  
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 In summary, the intention of this research is to show the strengths of a group-based SDSS 

for wind farm site suitability. The example was demonstrated through a case study for regional 

planning in Northwest Ohio but the methodology provides other flexibilities such as the use of 

specific criteria for different study areas, employment of different criteria weighting techniques 

and aggregation methods, and implementation in a variety of settings. Whereas this study 

required participants to be present at the same location and at the same time, implementing 

SDSSs over the internet can eliminate these restrictions and promote collaboration among 

participants all over the world. Although methods and techniques used in this research can be 

changed and improved upon, the presented approach is a valuable tool for simplifying and 

enhancing decision-making process of complex spatial multi-criteria problems.  
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APPENDIX A: FIGURES 

 

Fig. 1. Location of the study area. 
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Fig. 2. Decision process hierarchy. 
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a) b) c) 

 

Fig. 3. Standardized environmental factors a) wind speed; b) distance to important bird areas; 
and c) land use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

 

 

a) b) c) 

 

Fig. 4. Standardized economic factors a) proximity to transportation; b) proximity to transmission 
lines; c) soil; d) population density. 
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Fig. 5. Sequential steps of the SDSS model. 
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a) b) c) 

 

Fig. 6. Distribution of importance values assigned by the participants for the environmental 
factors (a), the economic factors (b) and for the objectives (c). 
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a) b) c) 

 

Fig. 7. Results using weights calculated from the Borda method. Alternative (a) is the suitability of 
the environmental factors,  (b) is the suitability of the economic factors, and (c) is the weighted 
aggregation of (a) and (b). 
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a) b) c) 

 

Fig. 8. Sensitivity analysis applied to the area classified with high suitability (0.8 – 1) for (a) the 
environmental factors, (b) the economic factors, and (c) the objectives. 
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Fig. 9. Relative change in areas of high suitability associated with the sensitivity analysis for, (a) wind 
speed, (b) IBA, (c) land use, (d) proximity to transportation, (e) proximity to transmission, (f) soil, (g) 
population density, (h) the environmental objective and (i) the economic objective. 
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APPENDIX B: TABLES 

 

 

 

 

 

 

 

 

 

 

Table 1 
Fuzzy set memberships and membership functions with control points used for wind farm site 
suitability 
 
 
Project Objectives and Criteria 

Control Point  
a 

Control Point     
b 

Fuzzy Function/ 
Membership 

 
    
Environmental Factors    

Wind Speed (m/sec)    
0.0 – 5.6 (Class 1)   0.3 
5.6 – 6.4 (Class 2)   0.8 
6.4 – 7.0 (Class 3)   1.0 
7.0 – 7.5 (Class 4)   1.0 

Distance from Important Bird Area (m) 5000 30000 Linear - Increasing 
Landuse (no units)    

Shrub, Barren, Pasture, Cropland   1.0 
Grassland, Forest   0.667 
Developed Areas, Water, Wetlands   0.333 

    
Economic Factors    

Proximity to Major Transportation (m) 1000 10000 Linear - Decreasing 
Proximity to Transmission Lines (m) 1000 20000 Linear - Decreasing 
Soil (no units)    

Gravel   1.0 
Sand   0.8 
Silt and Clay, LL < 50   0.6 
Silt and Clay, LL > 50   0.4 
Highly Organic   0.2 

Population Density 20 200 Linear - Increasing 
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Table 2  
Borda scores and normalized weights. Rankings shown in parenthesis 
 
Objective Aggregation Weight Factor Borda Score (vi) Normalized Borda Weights 

Environmental 

env= 0.47 

WS 52 W1 = 0.55 (1) 
IBA 18 W2 = 0.19 (3) 
LU 24 W3 = 0.26 (2) 

   

    

Economic 
 

econ = 0.53 

PTp 55 W4 = 0.29 (2) 

PTm 66 W5 = 0.35 (1) 

S 33 W6 = 0.17 (4) 

PD 36 W7 = 0.19 (3) 
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