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ABSTRACT 

 

Peter Gorsevski, Advisor 

 

Early detection and locating of influenza outbreaks is one of the key priorities on a 

national level for preparedness and planning. This study presents the design and implementation 

of a web-based prototype software framework (Fluwitter) for pseudo real-time detection of 

influenza outbreaks from Twitter in space and time. Harnessing social media to track real-time 

influenza outbreaks can provide different perspectives in battling the spread of infectious 

diseases and lowering the cost of existing assessment methods. Specifically, Fluwitter follows a 

three-tier architecture system with a thin web client and a resourceful server environment. The 

server side system is composed of a PostGIS spatial database, a GeoServer instance, a web 

application for visualizing influenza maps and daemon applications for tweet streaming, pre-

processing of data, semantic information extraction based on DBpediaSpotlight and WS4J, and 

geo-processing. The collected geo-tagged tweets are processed by semantic NLP techniques for 

detecting and extracting influenza related tweets. The synsets from the extracted influenza 

related tweets are tagged and ontology based semantic similarity scores produced by WUP and 

RES algorithms were derived for subsequent information extraction. To ensure better detection, 

the information extraction was calibrated by different rules produced by the semantic similarity 

scores. The optimized rule produced a final F-measure value of 0.72 and accuracy (ACC) value 

of 94.4%.   The Twitter generated influenza cases were validated by weekly influenza related 

hospitalization records issued by ODH. The validation that was based on Pearson’s correlations 

suggested existence of moderate correlations for the Southeast region (r = 0.52), the 
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Northwestern region (r = 0.38), and the Central region (r = 0.33). Although, additional work is 

needed, the potential strengths and benefits of the prototype are shown through a case study in 

Ohio that enables spatio-temporal assessment and visualization of influenza spread across the 

state. 
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INTRODUCTION 

Seasonal influenza is a viral disease which causes severe health issues and mortality in 

high risk population groups and spreads from person to person (Fauci 2006, Wikramaratna and 

Gupta 2009). The seasonal influenza circulates globally and affects all ages of people causing 

different symptoms such as high fever, cough, headache, pain, sore throat, and runny nose. 

Seasonal influenza differs from influenza pandemic which is caused by the emergence of new 

non-existent viruses as people have neither natural resistance nor there are readily-available 

vaccines (Smith et al. 2009). Major pandemics such as the "Spanish flu" (N1 subtype)  have 

killed over 50 million people world-wide in 1918-1919 while a different subtype strain of the 

same influenza (N2) caused a total of 69,800 and 33,800 deaths in 1957-1958 and 1968-1969 

respectively in United States alone. Other example of a recent influenza threat such as the swine 

flu (H1N1) caused a world-wide pandemic in 2009 and currently is a human seasonal flu that 

also circulates in pigs.  The avian influenza (H5N1 and H7N9) which is another highly 

pathogenic disease caused by domestic poultry has been reported since 2003. The highly 

pathogenic avian influenza has caused number of concerns because of high mortality among 

confirmed human cases and spread from birds to other mammals globally (Meltzer et al. 1999, 

Yoldascan et al. 2010, About the Flu | Flu.gov 2015). However not all influenza subtypes will 

mutate into highly pathogenic forms that will cause severe illnesses or deaths (Wikramaratna and 

Gupta 2009). 

 Significant outbreaks of influenza  such as at the "World Youth Day 2008 Mass 

Gathering" in Sydney, Australia  (Blyth et al. 2010) are infrequent while seasonal small scale 

outbreaks are the most common form (Gault et al. 2009). Apart from the health risks and other 

unpredictable effects on communities, influenza epidemics can have a great indirect impact on 
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the annual economy through absenteeism caused by closure of work places, businesses, schools 

and other infrastructure (Meltzer et al. 1999, Keogh-Brown et al. 2010, Yoldascan et al. 2010). 

Some risk estimates and predictions suggest that a potential severe influenza epidemic in the 

United States alone will cause 89,000 to 207,000 deaths and economic impact between $71.3 to 

$166.5 billion (Meltzer et al. 1999) while estimates for United Kingdom suggest a loss of 6% 

annual GDP (Keogh-Brown, Smith, et al. 2010). Because of the unpredictable nature associated 

with  potential influenza epidemics or outbreak and limited response timeframe before a major 

event, an early detection of influenza and potential spread is one of the  key priorities on  a 

national level (Aramaki et al. 2011) . 

Influenza preparedness planning varies by individual countries and most of the countries 

maintain their own guidelines for assessing and tracking outbreaks and interventions through 

their national institutes and programs such as the Center for Disease Control and Prevention 

(CDC) in the United States. Such institutes maintain different programs including the influenza-

like Illness Surveillance Net-work (ILINet) (ILINet, 2015) in United States, the European 

Influenza Surveillance Scheme (EISS), and the Japanese Infection Disease Surveillance Center 

(IDSC) which employ traditional virology and clinical data (Griffin et al. 2009).  

Some of the shortcomings are that current assessment practices are costly and inefficient 

for prompted reporting of the spread and consequent management and containment (Culotta 

2010). For instance, current assessment practices that are used for early influenza detection 

include telephone triage service data (Espino et al. 2003) and telephone or internet based 

voluntary influenza reporting data from such health institutions/programs and hospitals (Rutter et 

al. 2014). Alternatively, over-the-counter pharmaceutical sales have been used for making early 

warnings of disease outbreaks (Magruder 2003), but certainly it will be ineffective in countries 
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where anti-influenza drugs are not issued over the counter. Other assessments are based on 

school absenteeism to detect possible school-based outbreaks (Mann et al. 2011) as well as other 

evidence-based techniques that are able to detect school closures during influenza outbreaks 

(Sasaki et al. 2009). However, the drawback with the current assessment approaches is that they 

have a lag time in data collection and delayed processing time which complicates preparedness 

and real time response. 

In recent years, online social networking has revolutionized interpersonal communication 

and becomes ubiquitous and important tool that initiates new assessment strategies (Crooks et al. 

2013). Among different social media outlets, information generated by microblogging platforms 

like Twitter (https://twitter.com) becomes more important for understanding dynamic trends that 

can support real-time assessment and consequent decision making because they are concise and 

tend to be updated more frequently. Microblogging is a form of blogging generated by 

crowdsourced information that has a small content in terms of actual and aggregated file size. 

For instance, Twitter limits its content to 140 characters, while the daily volume of tweets 

exceeds more than 500 million by an approximately more than 284 million active users 

(Oussalah et al. 2013; Cheng, Caverlee, and Lee 2010). The geographically referenced or geo-

tagged nature of the tweets provides a real-time and cost-free data stream for space-time 

analytics.  Such framework has influenced the development of many different applications in 

areas such as disaster management (Lucas 2012, Crooks et al. 2013), emergency response 

(Gelernter and Mushegian 2011),  regional event detection (Lee et al. 2011), road hazard 

detection (Kumar et al. 2014), disease spread detection (Chen et al. 2010, Culotta 2010, Aramaki 

et al. 2011, Signorini et al. 2011, Kostkova et al. 2014), predicting future events (Bermingham 

and Smeaton 2011, Rao and Srivastava 2012, Vu et al. 2012, Kostkova et al. 2014, Ceron et al. 

https://twitter.com/
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2015)  and analyzing the effects of a past event (Chew and Eysenbach 2010, Vieweg et al. 2010, 

Miyabe et al. 2012).   

The use of Tweeter to track influenza and other epidemic research has also been 

implemented through  Twitter Application Programming Interfaces (APIs) (Aramaki et al. 2011, 

Lee et al. 2013). Although the streaming APIs provide real-time tweets, most of the early work 

used locally archived tweets that were coupled with post-processing (i.e., non-real-time) 

approaches.  Techniques such as archived data based classifiers (implemented using machine 

learning) (Aramaki et al. 2011, Lamb et al. 2013, Bodnar et al. 2014, Kostkova et al. 2014), 

construction of regression and other predictive statistical models (Chen et al. 2010, Arias et al. 

2013), and development of information ranking algorithms (Stewart and Diaz 2012)  are just a 

few of the approaches used for processing tweets. Applications that validate occurrences and 

distribution of seasonal influenza form tweets using conventional sources such as government 

health agencies have been also attempted (Lampos and Cristianini 2010, Lamb et al. 2013). 

Although there is some success with those non real-time approaches, the main drawback is their 

inability to provide status of influenza in real-time.  

New application developments that are focused on different methodological ideas for 

real-time influenza tracking have been also reported  by multiple researchers (Achrekar et al. 

2011, Aramaki et al. 2011, Lee et al. 2013).  For instance,  Lee et al. (2013) used fixed tag word 

frequency analysis in flu tweets (i.e., keyword “flu”) for tracking cases of influenza in real-time. 

Achrekar et al (2011) used text mining and autoregression with exogenous inputs (ARX) model 

where past time-series ILINet data from CDC represent the autoregression portion of the model 

while tweets serve as exogenous inputs (i.e., external component). The intention of the model is 

to relate tweets to the time-series where one would like to explain the extent of ILI cases 
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reported with high accuracy. A support vector machine based classifier was employed by 

Aramaki et al. 2011 for real-time extraction of influenza tweets. A support vector machine 

(SVM) is a learning machine approach that is used for two-group classification tasks where input 

vectors are non-linearly mapped to a very high dimension feature space (Cortes and Vapnik 

1995). Aramaki et al. 2011 used SVM classification for extracting only tweets mentioning actual 

influenza patients from all retrieved tweets. 

The most critical part of the twitter based research is the information extraction (IE). 

Tweets contain semi-structured/unstructured, non-standard, and ill-formed text such as user hash 

tags (Oussalah et al. 2013), hyperlinks (Vakali et al. 2012, Kostkova et al. 2014), image links, 

geo-location tags (Lee et al. 2011, Tao et al. 2012, Guo and Chen 2014) and symbolic emotions. 

While user created tags and symbols do not always provide dependable information, links 

provide a little or no information (Chang et al. 2013). Additionally, user profile information, 

location of origin, number of times a tweet has been re-posted (retweet) and posted time might 

also be available as metadata along with each tweet depending on the user account settings 

(Chew and Eysenbach 2010, Walther and Kaisser 2013).  

Different approaches have been proposed for IE from unstructured tweets. Some of the 

approaches depend on hash tags and URLs based IE, while other approaches use entire tweet 

content (Chew and Eysenbach 2010, Walther and Kaisser 2013, Kostkova et al. 2014). In the 

current literature, the two major approaches used for IE are rule based (hand crafted rules) and 

statistical approaches (Hua et al. 2012). The automated handcrafted rule based implementations 

have faster executions, but they are difficult to construct with all the possible rules for a real 

world scenario (Hua et al. 2012). Instead, approaches such as machine learning are capable of 

generating rules and/or models on their own, and can be implemented to different sets of data 
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using supervised or unsupervised techniques. Hence, such approaches become more practical 

and have been widely adapted for influenza research using tweets (Aramaki et al. 2011, 

Signorini et al. 2011, Lamb et al. 2013).  

The shortcomings with typical rule based or statistical techniques are that they are purely 

driven on keyword searches and lack semantic capabilities. The semantics in computer sciences 

is a growing field that focuses on capturing relationships and meaning between signifiers, like 

words, phrases, signs, and symbols, and contextual meaning as inherent in the larger text blocks 

or narratives (Pustejovsky and Boguraev 1996). In social media content, the intent of semantic IE 

is to enable computers to understand the meanings of human expressions and concepts that are 

specified by content (Grassi et al. 2011, Bontcheva and Rout 2014). In order to improve the 

computer-understanding of those relationships, often ontologies are used which represent 

conceptualization of specific domains of interest for organizing the concepts. Ontology is a 

semantic structural framework for understanding human expressions through description, 

classification, and reasoning of spatial (and non-spatial) data. Ontology represents knowledge 

thought a set of concepts which is used to describe relations that exist within the structural 

framework of the domain. They are comprised of classes and properties where classes represent 

a concept or a physical entity in the domain of interest while the properties link the relations 

between multiple classes. Ontologies used for IE are knowledge based, often developed to model 

relationships through descriptions consisting of classes and properties (Guarino 1998).  

Such ontologies are used in IE attempts to increase  understanding of natural language 

text in the tweets (Hedden 2008). DBpedia (Lehmann et al. n.d.) is one of the best open-domain 

ontologies, which uses knowledge (articles) contained in the open encyclopedia "wikipedia.org" 

(Nebhi 2012). DBpedia Spotlight tool (Mendes et al. 2011)  which is an extended product of 
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DBpedia  is currently available and it can be used for extracting the meaning and relationships of 

words/terms in tweets. Thus, there is a need for additional research that improves current real-

time approaches by focusing on the true meaning (semantics) of tweet contents. Further, 

application of spatio-temporal analysis techniques for flu tweets will bring additional 

information and enhanced decision support capabilities. This study proposes to develop a real-

time approach that integrates Twitter Streaming APIs for real time data retrieval with the purpose 

of formulating spatio-temporal influenza outbreaks using tweets. 

The proposed objectives for this study are 1) to harness real-time information from 

georeferenced Twitter messages that relate to the spread of influenza; 2) to develop a rule-based 

information extraction system that links semantic descriptions to ontological properties of the 

influenza related tweets; 3) to calibrate the rule-based information extraction and validate the 

influenza tweets using data from ILINet; and 4) to build a web-based prototype for visualization 

and analytics of tweets. The first objective intends to acquire and prepossess real-time Twitter 

messages that have a geolocation for the state of Ohio. The goal of the second objective is to 

implement information extraction from the Tweets by tagging and queries of custom built 

dictionary. The next objective will calibrate the rule-based information extraction by exploring 

different thresholds applied to a training dataset. In addition, this objective will attempt to 

validate scenario from real-time tweets against standard ILINet influenza data. The aim of the 

final objective is to develop an interactive web application for visualization of spatio-temporal 

distribution of influenza tweets. 
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CHAPTER I. DATASET AND METHODS 

1.1. Dataset 

 Study area is restricted by geo-tagged tweets which have geographic coordinates and 

originate within the state of Ohio. The area is defined  by  the  following east-west  extent  

between  -80.52°W  and  -84.81°W  longitude  and  a  north-south  extent  between  41.99°N  and  

38.40°N.  The geo-tagged tweets are most likely generated by mobile devices such as smart 

phones and tablets, but personal computers are also used to generate considerable amount of 

tweets. In the state of Ohio, nearly 100,000 geo-tagged tweets are generated each day, but this 

number can be significantly increased during holidays or a popular gathering events. The  Pew 

Research Center study from 2013 (Social Media Update 2013 | Pew Research Center 2016), 

suggests that 50% of USA Twitter users are between 18 and 50 of age. Considering the similar 

age groups in Ohio, 30.4% of the population is between 18 -  40 age and 46% of the population 

is between 18 - 50 age. Furthermore, the Northeastern Ohio shows the highest regional mean of 

the median age of its counties which is 37.74, while the Southeast Ohio has the lowest regional 

mean of the median age of its counties of 35.35 (Ohio QuickFacts from the US Census Bureau 

2016) .  

 Tweet messages are streamed nearly real time from Twitter data center servers using 

Twitter Streaming APIs.  The geographic region of interest for streaming tweets is provided as a 

filter with the values of the bounding box coordinates.  The individual messages streamed by this 

API are JSON (JavaScript Object Notation) encoded which is an open-standard format that uses 

attribute/value pairs represented by readable text. A tweet object is composed of varying number 

of attributes depending on the content such as location of origin, source device, a unique tweet 

id, message text, message source (i.e. web, i-phone, android and etc.), longitude, latitude, place 
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polygon, and created time (Tweets | Twitter Developers 2015). A set of attributes that are used in 

this study are shown in Table 1. For example, the "text" attribute in the table contains the twitter 

message which is the content information used to identify a topic of interest such as flu or 

influenza. The contextual information such as spatial information (originating location) is stored 

in "longitude", "latitude" fields, while the "place_polygon" attribute stores the geo-coordinates of 

the polygon representing the originating location which is normally a bounding box or boundary 

of a municipality or other administrative district. Depending on the user's privacy and device 

settings, exact originating location could be missing from the "longitude" and the "latitude" 

fields. In such cases, the information comes in "place_polygon" attribute which is used to capture 

the spatial information. Temporal information is extracted from the "created_at" timestamp 

attribute. 

1.2. System Architecture 

The proposed client-server system has been designed following the three tier architecture 

including: data tier, a logic tier (application tier) and a presentation tier (Fig 1).  The data tier 

stores both unprocessed and processed tweets and they are accessed by the logic tier 

components. The data tier combines PostgreSQL database server with the PostGIS spatial 

extension that is used to accommodate efficient implementation of spatial data queries that 

follow the simple features for SQL specification from the Open Geospatial Consortium (OGC). 

The PostgreSQL open source software component is an object-relational database management 

system (ORDBMS) with an emphasis on extensibility for allowing users to define internal 

functions in many programming languages (i.e., Java, Python, PHP, C++).  The database server 

can handle different workloads which support small single-machine applications or large 

distributed and concurrent applications.  
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 The logic tier contains the Twitter streaming client, pre-processor, semantic tagger, 

semantic similarity calculator and geographic data processor components. The fundamental tasks 

performed by the logic tier include real-time collection of tweets using Streaming API, storing 

tweets in a spatial database, preprocessing and normalizing, semantic tagging, calculating 

semantic similarity between words, and other analytics which support visualization and mapping. 

The logic tier makes concurrent uses of the PostgreSQL/PostGIS database in the data tier which 

is the centric place for storing unprocessed twitter messages and retrieving twitter messages for 

further processing. The individual components in the logic tier have no direct link between them 

but they are connected through the database module. The components represent independent 

daemon applications developed in Java and they are hosted as system services in a Linux 

(Ubuntu) server environment. However, to meet the real time processing requirements some of 

the compute-intensive components such as the pre-processor, the semantic tagger and the 

semantic similarity calculator services were designed to perform parallel processing.  

The data-intensive tweet streaming client has been designed to efficiently read and store 

tweets real-time with no lags, while the rest of the compute-intensive components have been 

designed to efficiently perform the pseudo-real time Twitter data processing in the backend. The 

Twitter streaming client maintains a streaming connection based on Hypertext Transfer Protocol 

(HTTP) to keep the connection with Twitter data servers. Both the semantic tagger that connects 

with the DBpedia Spotlight web service and the geographic data processor that connects with the 

GeoServer web services, use HTTP based Representational State Transfer (REST) style 

communication.  

 Finally, the presentation tier consists of the custom built web application and the 

GeoServer geo-spatial data sharing server. GeoServer stores the maps generated by the 
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geographic data processor component and delivers them to the web application on request. The 

web application is developed in Java, HTML and JavaScript and it renders maps received from 

the GeoServer on an interactive web browser interface. 

1.3. System Components and Major Tasks 

1.3.1. Tweet Streaming Client 

 The Twitter Streaming APIs collect real-time tweets from public streams. The collection 

process from the public streaming endpoint uses a module called Twitter4J which is an open-

source Java library for the Twitter API, released under the Apache License 2.0 (Yamamoto 

2010). To make the collection process more robust, the implementation constraints the language 

of the content to English and the geographic area to the bounding box of  Ohio. Then those 

constraints are sent as the streaming filter criteria called a Twitter "POST statuses / filter" along 

with the Twitter streaming request. The Twitter Streaming API returns the matching tweets in 

either XML (EXtensible Markup Language) or JSON format which is used in the prototype due 

to its simplicity and compactness. In addition, to avoid disruption in the collection of the 

streaming data, the individual JSON tweets are saved first to the database before separate 

background process is used to parse the tweets into components which are organized and 

converted to Java objects. The text message content of individual tweets are stored in a 

PostgreSQL spatial database along with their originating geo-location and timestamp. 

1.3.2. Pre-Processor 

 The main goal of this module is to pre-process the raw data which contains a substantial 

amount of noise. The noise contains repetitive and decorative character sequences, slang words, 

URLs, and emoticons, misspelled words, and abbreviated phrases which require further 

preprocessing of the tweets. Figure 2 shows the preprocessing steps which include tokenizing, 
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standardizing, word noise removing, and word spell correction. At the pre-processing stage, the 

original tweets are retrieved from the database and then they are passed for text processing using 

the chained processing sequences described above. The noise free pre-processed tweets were 

stored back in the database using a separate table.  

 The removal of emotions and unnecessary punctuations is the first step that filters tokens 

such as decorative and/or repetitive character sequences or other emoticons characters using the 

ArkTweet NLP (Owoputi et al. 2012) library. The ArkTweet NLP methodology implements an 

unsupervised hierarchical clustering technique and supports a broad range of Unicode. In 

addition, the lists of tokens extracted by ArkTweet NLP were further standardized by using a 

custom built list of frequently found anomalous words/terms such as abbreviations. The word 

look-up list included an anomalous word list from the GATE Twitter part-of-speech tagger 

(Derczynski et al. 2013) and a selection of frequent anomalous words that were found from 

collected tweets.  Additional pre-processing  included, corrections of misspelled words by using 

predefined rules and patterns from a standard dictionary,  removal  of high-frequency words (i.e. 

"the", "is", "at", "which", "on" and etc.) using a “stop word dictionary” , and removal of URLs or 

other user profiles tagged with "@" symbol. On the other hand "#" symbols in hashtags were 

striped from meaningful words and kept for further processing. 

1.3.3. Semantic Tagger 

 The semantic tagging process intends to extract the meaning of a subject contained in a 

tweet. Semantic tagging implies meaning of a human concept that a computer can be 

programmed to understand. The ontologies are the building blocks that define the relationships 

and respective meanings between the words. For instance, the sentence "I have got the flu, it's the 

last day of school" could be tagged with "flu" and "school" tags referring  them to the matching 
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ontology classes of "http://dbpedia.org/page/Influenza" and "http://dbpedia.org /page/School" 

respectively. Semantic taggers are available as programmatically accessible software tools which 

tag words using a given ontology. For instance, the DBpedia Spotlight semantic tagger which 

maps words to DBpedia ontology implements natural language text tagging  and generates 

annotations in formats such as HTML, RDFa, XML, and JSON (Fig. 3). 

 The DBpedia Spotlight semantic tagger is used for tagging of the individual tweets and 

ontological URIs references are extracted and stored in a database as tags. The statistical 

implementation of the DBpediaSpotlight was hosted as a standalone web service that is 

implemented on a local server and accessed by a web service client request. Such a web service 

request consists of a set of parameters including values for support, confidence, annotation 

policy and entity types (optional) that are accompanied by the tweet text. For instance, the 

confidence and the support parameters govern the criteria for tagging and for specific ontology 

classes, where different confidence and support values can results in different number of tagged 

outcomes.  In this application the values for these parameters were kept constant using 

confidence and support of 0.2 and 20 respectively. The values were determined through a 

calibration process that used a subset of true positives (i.e., correctly identified tweets) and false 

positives (i.e., incorrectly identified tweets). Each request to the web service generates a set of 

semantic tags and a set of attributes for each tag including support and similarity score (degree of 

similarity between the tagging term and the related ontology class). 

 A wide variety of semantic tags with different subject areas are generated for each 

individual tweet. The processing of semantic tags in this work is focused only on the semantic 

tags which relate to potential influenza subject areas. To accomplish this, a list composed of 

influenza related ontological entity types  such as biology, health, medicine, and their sub types 
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so-called “white-list policy” was used to accelerate the processing and enhance the extraction of 

influenza related tweets. Since the speed of received tweets at the streaming client exceeds the 

speed of semantic tagging processing, a parallel-processing component was implemented to 

increase the performance. Distributed and parallel-processing of data was achieved by 

implementing virtual partitioning on the pre-processed tweet records in the database based on the 

primary key value. However, additional customization of the implemented design allows for 

further improvements such as distributed processing over multiple servers.  

1.3.4. Semantic Similarity Calculator 

Semantic similarity or semantic relatedness represents a measure defined over a pair of 

terms that reflect relationship or the likeness of their meaning. For instance, when a tweet 

contains an influenza case, semantics of words/terms in the tweet reflect the similarity between 

words/terms with "influenza" as a measure of strength. The semantic similarity in this 

implementation was calculated by two different similarity scores including scores from semantic 

tags and from the words in the pre-processed tweets. Specifically, the semantic similarity can be 

calculated by different techniques such as WUP (Wu and Palmer 1994), RES (Resnik 1995) and 

JCN (Jiang and Conrath 1997). WUP computes semantic similarity between terms based on the 

number of nodes between the hierarchies of terms which represent their lowest common 

subsume and the root. Both RES and JCN determine the similarity of two terms based on their 

distances to the closest common ancestor term and/or the annotation statistics of their common 

ancestor terms. The WordNet that was used here is a semantic network database for English 

language which was developed by University Princeton. WordNet similarity for Java (WS4J) 

(Shima 2013) is a tool that implements WUP and RES semantic similarity algorithms  in Java 

(Miller 1995). The implementation of the algorithms is based on the path length and information 
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content methods. While the  path length  method  calculates number  of  nodes  or  relation  

between  nodes  in taxonomy, the information  content  method is based on frequency counts of 

concepts as found in a corpus of text.  In this work, WUP and RES algorithms in WS4J were 

used to measure the semantic similarity for each tweet. 

 The WUP algorithm estimates relatedness based on depths of two synsets (i.e., a set of 

synonym of a concept) in the WordNet database and in the direction of depth of the lcs (least 

common subsume).  For instance, synsets can be related based on semantic relation that holds 

between two words that can (in a given context) express opposite meaning (antonymy), semantic 

relation of being superordinate or belonging to a higher rank or class (hypernymy), or semantic 

relation that holds between a part and the whole (meronymy).  Equation 1 takes two concepts c1 

and c2 (two ontology elements) and returns the semantic similarity between them which is a 

score between 0 and 1. A score of 0 indicates no relationship between the synsets and 1 indicates 

that the synsets are identical. In case of an error a score of -1 is returned by the algorithm. The 

lcs in the equation represents the deepest “shared parent” of two nodes where the depth is 

defined as the separation from the root concept in terms of amount of nodes. Thus, the deeper the 

lcs is, the more similar the concepts are. For example, the lcs of "cough" and "fever" is 

"symptom" as the closest relationship between them is being symptoms of a disease.  

𝑠𝑖𝑚𝑊𝑃(𝑐1, 𝑐2) =
2 ∗ 𝑑𝑒𝑝𝑡ℎ(𝑙𝑐𝑠(𝑐1,  𝑐2))

𝑙𝑒𝑛(𝑐1, 𝑙𝑐𝑠(𝑐1, 𝑐2)) +  𝑙𝑒𝑛(𝑐2, 𝑙𝑐𝑠(𝑐1, 𝑐2)) +  2 ∗ 𝑑𝑒𝑝𝑡ℎ(𝑙𝑐𝑠(𝑐1,  𝑐2))
 

Eq.(1) 

The Resnik's measure (RES) of semantic similarity between synsets is based on the 

information content (IC) that uses the term probability.  The RES algorithm takes two concepts 

c1 and c2 (two words or terms) and returns the semantic similarity which is a score between 0 and 
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positive infinity, or returns an error score of -1 in case of an error. The Resnik's measure for 

comparing the synsets is defined as follows: 

𝑠𝑖𝑚𝑅𝑆(𝑐1, 𝑐2) = 𝐼𝐶(𝑙𝑐𝑠(𝑐1,  𝑐2)) 

𝐼𝐶(𝑐) = −𝑙𝑛(𝑝(𝑐)) 

Eq.(2) 

where sim(c1, c2) is the set of common ancestors of terms c1 and c2 in the ontology. One of the 

drawbacks with the Resnik measure is the coarseness because many different pairs of concepts 

may share the same lcs. 

 The semantic similarity scores used in the prototype included sets that were generated 

from semantic tags and sets that were generated from synsets (words/terms). The extracted tags 

and synsets from each tweet were evaluated for semantic similarity with “influenza” by WUP 

and RES separately. In addition to WUP and RES scores, overall scores of semantic similarities 

were calculated by summing the scores generated by WUP and RES for each tweet. The 

similarity scores from both algorithms produced new database columns including "Tag_WUP", 

"Tag_RES”, "Word_WUP" and "Word_RES” which were stored for each individual tweet. The 

usefulness of the overall similarity scores is that signify the degree of relation between tweets 

and “influenza” as a function of multiple tags or synsets.  However, it should be clear that the 

effectiveness of those semantic similarity scores depends upon the strength of the semantic 

tagger and initial specification of confidence and support parameters. 

 Because ontologies are conceptualization of a domain of interest that is associated with 

representation of knowledge, the influenza related concepts are represented by a concise amount 

of classes (i.e., tags or synsets) or a finite set of elements in the WordNet environment. The 

property that links two or more classes in the domain of interest (i.e., cough and fever associated 
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with influenza) signifies that those classes are members of the same set. Members of the same set 

have similar structural hierarchy which allows for development of custom rules that can place 

focus on specified content of interest. For that reason, in the proposed prototype similarity scores 

were pre-calculated for the most relevant set of influenza related concepts. The pre-calculated 

similarity scores were generated by WS4J which were later used as a quick reference (i.e., 

lookup file). The reason for pre-calculated similarity scores was to reduce the computational 

requirements that are required for real time calculation of dynamic scores.  However, the 

approach described here is completely applicable to other domains but additional similarity 

scores need to be recalculated or introduced dynamically. 

 The additional efforts that were considered in the prototype were focused on the detection 

of similar relationships used from different domains.  For instance, the information extraction 

process was further improved to capture precise semantics of synonyms such as fever, flu, and 

chills that are also used in domains such as sport and entertainment. This task was performed by 

random selection of 2000 tweets that were queried for containment of influenza related words. 

Each tweet was flagged as Boolean true or false and consequently labeled with the mostly 

appropriate domain representation. The next step implemented a word frequency analysis to 

depict domain labels and to elicit the occurrence of non-representative domains used in the 

influenza context.  Identified domains were mapped and their respective ontological classes were 

listed for the exclusion of such relationships (i.e., exclusion semantics list or rules). The 

exclusion list was then used to calculate the semantic similarity scores for tags and synsets that 

were associated with non-influenza related domains. The overall scores produced by WUP and 

RES algorithms produced two new measurements called “UnlikeFlu_WUP" and 

"UnlikeFlu_RES" that were added into the database. All semantic similarity scores 
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("Tag_WUP", "Tag_RES", "Word_WUP", "Word_RES", " UnlikeFlu_WUP" and 

"UnlikeFlu_RES") were used in the calibration process for formulating rule(s) for identifying 

influenza related tweets. 

1.3.5. Calibration 

 The calibration used a randomly selected subset of 1400 tweets, which were determined 

by influenza related keywords and had pre-calculated semantic similarity scores. The subset of 

tweets were individually interpreted for influenza related content and the final result yielded a 

total of 107 influenza related tweets (i.e. positives) and 1293 non-influenza related tweets (i.e. 

negatives). The influenza related tweets were manually processed for inclusion of symptoms 

such as fever, chills, sore throat and sickness induced incidents (i.e. school or workplace 

absence). However, it should be clear that ambiguity associated with this complex subject area 

presents a significant challenge and limitation when it comes to optimized calibration for 

semantic language processing (i.e. accounting for all possible word meanings) and automated 

computational knowledge acquisition.  Therefore, the presented calibration may not be optimal 

but represents an attempt for finding a better understanding of the influenza related meaning in 

tweets.   Manually processed tweets were flagged using Boolean true or false notation and stored 

in a new table field called "HasFlu".  

 To improve the prediction of influenza, the randomly selected subset was used to 

generate rules that optimize the detection based on the similarity scores. The following four 

similarity scores including "Tag_WUP", "Tag_RES", "Word_WUP" and "Word_RES" were 

tested separately for a threshold value that optimizes the number of correctly identified influenza 

tweets (i.e. true positives) and correctly identified non-influenza tweets (i.e. true negatives). Fig. 

4 shows a confusion matrix also called contingency table that is used for a binary classification.  
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Across the top are the prediction outcomes (i.e. predicted) and down the side are the actual 

values (i.e. observed).  The confusion matrix displays the number of correct and incorrect 

predictions made by a model compared with the actual classifications in the test data. In this 

work, the quality of the classification from the threshold value was evaluated from a confusion 

matrix by different measurements shown in Equations 3 to 6. The recall (Eq. 3) represents a 

measure of the ability of the system to present all relevant items, while precision (Eq. 4) 

represents a measure of the ability of the system to present only relevant items. The F-measure 

that combines precision and recall is the harmonic mean and represents a weighted average of 

the precision and recall, where a score of 1 is the best score and 0 is the worst score. The 

accuracy (Eq. 6) is a statistical measure of how well a binary classification test performed in 

terms proportion of true results (both true positives and true negatives) among the total number 

of items. The accuracy is expressed as a percentage and 100% indicates the best accuracy level. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 Eq.(3) 

where TP is the number of true positives and FN is the number of false negatives. The number of 

relevant items retrieved is the TP while the number of relevant items in the collection is the TP + 

FN. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 Eq.(4) 

where TP is the number of true positives and FP is the number of false positives. The number of 

relevant items retrieved is the TP while the total number of items retrieved is the TP + FP. 
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𝐹 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

Eq.(5) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
(𝑇𝑃 +  𝑇𝑁)

𝑃 + 𝑁
∗  100 

Eq.(6) 

where TP is the number of true positives, TN is the number of true negatives, P is the number of 

predicted positives and N is the number of predicted negatives. 

 Fig. 5 shows the calibration best outcome curve which is associated with the 

“Word_WUP” semantic similarity scores. The x-axis in the figure represents the threshold values 

that were used for derivation of confusion matrices. For instance, the lowest overall score used as 

a threshold value on the x-axis is 0.05 while the highest score is 1.7.  The y-axis represents the F-

measure values that were derived from the confusion matrices generated by different threshold 

values. The figure shows that a threshold value of 0.93 generates an F-measure value of 0.65. 

The accuracy (ACC) for the "Word_WUP” threshold value (0.93) produced accuracy of 90.1%.   

 Additional enhancements for improving the F-measurement value and the accuracy 

(ACC) included a development of a rule that excluded similar influenza relationships from other 

domains.  This was accomplished by a logical condition that tested the relationship, if influenza 

related semantic similarity scores (“Word_RES”) are greater than the exclusion semantics 

similarity scores (“UnlikeFlu_RES”). The final rule that was implemented in this research was 

formulated as "Word_WUP >=  0.93 AND Word_RES > UnlikeFlu_RES".  The 

implementation of this rule produced a final F-measure value of 0.72 and accuracy (ACC) value 

of 94.4% where a total of 99 out of 107 influenza tweets were correctly identified in the 

calibration dataset. 
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1.3.6. Geographic Data Processor 

 Initial geographical data contained in tweets are points and polygons, but polygon data 

cannot be directly used to make an interpolated raster. Therefore, all polygon data are converted 

to their respective centroids points. Then, all overlapping data points are represented by one 

point and the number of total overlapped points is represented as the value for that point. Using 

those extracted data, GeoTools (About GeoTools — GeoTools 2015) library is employed to 

generate a shapefile for each day within the temporary file storage. The gdal_grid functionality 

of GDAL (Geographic Data Abstraction Library) (Open Source Geospatial Foundation 2015) 

was used to interpolate the influenza spread throughout the entire state of Ohio. By default, 

Inverse Distance Weighting (IDW) Interpolation is used, but other GDAL supporting 

interpolation algorithm can also be used. Since the resulting interpolated raster is a rectangular 

area extends beyond the boundary of Ohio, it was clipped by the boundary of Ohio using the 

gdal_wrap functionality. All GDAL functionalities are accessed through the Geobricks 

(Barbaglia and Murzilli 2011) library which is an open source Java wrapper for GDAL. 

 Generated rasters for each day are uploaded to a predefined workspace of the GeoServer 

(GeoServer 2015) instance with necessary spatial reference information using the 

GeoServerManager REST client library (GeoSolutions 2015). Uploaded rasters are available in 

the GeoServer as web map layers for web applications. Daily influenza maps which consist of 

number of influenza related tweets captured are automatically updated by hour reflecting latest 

available data. 
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1.3.7. Web Application 

 The influenza maps shown in Fig. 6 are displayed on a simple web application. The web 

application is hosted in an Apache Tomcat web server and integrates HTML (Hypertext Markup 

Language), Cascading Style Sheets (CSS) and Java Script. In addition, jQuery that is a set of 

JavaScript libraries designed to simplify HTML document traversing, animation, event handling, 

and Ajax interactions was used for the development of the client side. Daily influenza map layers 

stored in GeoServer are programmatically accessed through the Web Mapping Service (WMS) 

of GeoServer using the  OpenLayers (OpenLayers 2015)  JavaScript mapping library. Loaded 

daily maps are animated along the time to better visualize the variation of spatial and temporal 

spread of influenza. Further, generated statistical results including daily histograms and weekly 

influenza spread line charts are displayed along with the animated maps. 
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CHAPTER II. RESULTS AND DISCUSSIONS 

The results generated by the prototype software framework that quantify influenza related 

tweets in Ohio were generated for a total of 21 week period. The results were used for 

comparisons purposes against real influenza cases that came from hospitalizations reports issued 

by Ohio Department of Health (ODH) and morbidity and mortality weekly reports issued by 

CDC. Although the morbidity and mortality weekly reports show pneumonia related deaths, the 

weekly reports do not link pneumonia deaths directly to influenza cases. Often, the weekly 

reports are characterized by a time leg between initial reports of influenza symptoms and 

consequent hospitalization treatment or potential deaths. Thus, the comparison between real 

influenza cases and tweeter generated influenza cases is aimed at understanding possible 

similarities in the trends generated by both datasets and to show possible widespread influenza 

activity in time and space where the tweets originated.   

 In the state of Ohio, the Ohio Department of Health (ODH) generates influenza related 

laboratory surveillance and influenza related hospitalizations reports.  The influenza laboratory 

surveillance reports are perhaps the most reliable because they represent actual influenza cases. 

However, the availability of influenza laboratory surveillance reports is limited to few larger 

cities in Ohio. On the other hand, the influenza related hospitalizations are reported weekly, and 

they lack spatial detail because multiple counties in Ohio are aggregated into regions. Figure 7 

shows a total of seven regions labeled as: Northwest, Northeast, West Central, Central, East 

Central, Southwest, and Southeast. In this work, the comparison is based on this regional level of 

influenza that reports cases that are counted weekly.  

 The time-series plot in Figure 8 shows the influenza cases generated by the ontology-

based twitter prototype and the ODH influenza related hospitalizations for the seven regions. The 
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x-axis shows the time period comparison for each region, starting from the 40th week of 2015 

and ending by the 13th week of 2016 (October 4, 2015 to April 02, 2016). The y-axis shows the 

number of cases generated by the twitter prototype and the hospitalizations reports.  The scale of 

the y-axis varies because of differences in population, demographics, and perhaps tweeter users 

in rural or urban areas. It is interesting that all plots show higher influenza cases generated by the 

twitter prototype in the first part of the time-series (i.e. dashed vertical line week 8th), followed 

by abrupt jump associated with higher influenza cases from hospitalizations reports . For 

instance, the Central Ohio plot which is associated with a large student population and potential 

twitter users from Ohio State University shows the highest volume of tweets, while the West 

Central plot shows the lowest volume of tweets. The Pearson’s correlations between the twitter 

prototype identified influenza cases and the hospitalizations reports are present for the beginning 

period of the validation. For instance, the highest correlations in the beginning period (i.e. left 

from dashed vertical line) are associated with the Southeast plot (r = 0.52), the Northwester plot 

(r = 0.38), and the Central plot (r = 0.33).  The West Central plot has the weakest correlation (r = 

-0.03). Although there are no correlations in the last period of the validation in the figure, it is 

noticeable that there is a significant spike for all regions that shows similar pattern for the 

influenza cases generated from hospitalizations reports. However, at this point the cause that 

generates those differences that coincides with the end of the winter period is unclear. One 

possible cause based on data from the US National Center for Health Statistics (CDC - 

http://www.cdc.gov/nchs/deaths.htm) suggest that in the US the months of December, January, 

February and March are associated with the highest mortality.  According to CDC (J et al. 2016) 

reports most of the influenza related deaths are recorded for very young (under 1 year) and older 

age groups (over 65 years) which are the most likely non-twitter users.  In addition, the 
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uncertainties associated with natural language processing in this prototype require additional 

improvements and testing with new techniques such as artificial inelegance, pattern recognition, 

and data mining techniques. 

Also, the correlations reported here are maybe deceptive for number of reasons.  For 

instance, the twitter dataset could be further processed to discard retweets and successive posts 

by one user that is forwarded by another user. Such, retweets do not indicate new cases but 

represent a noise that can significantly increase the amount of cases reported with influenza. 

Also, an individual user may have multiple encounters with a single episode which can cause 

duplication of reporting influenza that relates to the same case. Thus, filtering tweets based on 

time constraint could be used to eliminate reports from the same users.  Another consideration is 

that the Twitter data generates a real-time assessment of potential influenza cases while the 

aggregated ODH data has time lag in the actual reporting of the data. On the positive side, the 

strength of the proposed methodology is that it allows a real-time assessment in space and time 

that can be used for preparedness of potential spread of illnesses such as influenza at finer time 

and space scales. 

 The relationship between the twitter generated influenza cases and influenza related cases 

from hospitalizations was further scrutinized for possible lagged correlations. Lagged correlation 

is the correlation between two time-series where one of the series exhibits shift due to delayed 

responses in time relative to the other series.  For example, there is a delay between first 

symptoms, consultation with a physician, time of diagnosis, initiation of treatment and 

hospitalization that is reported by ODH. To account for potential delays associated with one of 

the time-series a sample cross correlation function (CCF) is often used to identify the time lags. 
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For instance, plots from the lagged correlation intend to show two time-series that are shifted in 

time relative to one another on the x-axis. 

Figure 9 shows the cross-correlation between different lags that were calculated for the 

seven regions using the CCF. The horizontal blue lines in the plots represent the upper and the 

lower 95% confidence levels for significance of the CCF. The confidence interval is computed 

from a sample size and relies on several assumptions including 1) the time-series are 

uncorrelated, 2) the processes are not autocorrelated, 3) the populations are normally distributed, 

and 4) the sample size is large. For a two-tailed test, the approximate 95% confidence interval is 

+/- 1.96/ N = +/- 0.4277 where the sample size is N. A CCF estimates which exceed the 

confidence interval are considered to be significant with a lag that has an autocorrelation (ACF) 

that is beyond the dotted line. Also, the significant CCF estimates above the upper ACF line 

show positive cross-correlations and below the lower ACF line show negative cross-correlations. 

Moreover, in Figure 9 cross-correlations significance can be seen for the Central, 

Southwest, East Central, and West Central regions which are among the most populated regions 

in Ohio. The cross-correlations significance patterns (correlating lags) are different between the 

regions. For example, the central regions (Central, East Central, and West Central) have one or 

more CCF estimates above the ACF which suggest lagged correlation.  For example, there are 

two CCF estimates above the ACF associated with negative values for weeks 6 and 8 which 

represents correlation between Twitter generated and hospitalizations. Also there are CCF 

estimates above the ACF associated with the East Central and the West Central with negative 

lags that ranges between 4 and 8 weeks. The Southwestern region shows a significant cross-

correlation between two time series with no lags (i.e. lag is 0) which suggest absence of lagged 

correlation. The real cause of this delay may suggest that different administrative procedures 
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may have been in place for different regions and hospitalizations were reported differently. Also 

differences may have been caused by different parameters such as available health care facilities, 

mean annual household income and usage of Twitter. For example, the most common Twitter 

users or 31% of the population are associated with the 18 - 29 age group while 9% of the 

population are associated with 50 - 64 age group (Social Media Update 2013 | Pew Research 

Center 2016). Since the demographics varies across the state of Ohio especially in rural and 

urban areas, the results could be further scrutinized for other critical factors that may affect the 

information derived from the Twitter. 

 Figure 10 shows the spatio-temporal distribution of Twitter derived influenza cases in 

Ohio for a total of 8 weeks period.  The maps in the figure are compiled by interpolation of 

tweets that were aggregated on weekly bases. The period that is shown in the figure starts at the 

18th of October, 2015 and ends at the 12th of December, 2015. The weekly data in the figure was 

processed and aggregated to match the influenza reports issued by ODH. The figure shows that 

higher number of influenza related tweets are associated with densely populated areas of major 

Ohio cities such as Columbus, Cincinnati, Cleveland, Toledo, Dayton, Akron and Athens and 

their suburbs. In particular, the Columbus area in the Central region shows that influenza related 

tweets are reported almost through the entire 8 week period. On the other hand cities such as 

Athens show that higher volume of tweets were reported in particular weeks such as weeks 43 

and 49. Other cities such as Cleveland show variability through time where higher volume of 

tweets were reported at weeks 42, 46, and 48. Although, in this research it is difficult to extract 

the exact causes of influenza patterns, the visualization of the interpolated surfaces allows for 

examining space-time activity patterns that may be used for subsequent predictions of spared, 

transmission, and potential influenza infections. The output maps also allow for additional 
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analysis end exploration of relationships of important factors such as population density, human 

movement, interacting dimensions which include large gathering events during holidays that may 

lead to better real-time surveillance and understanding predictive potential of spread.  
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CHAPTER III. CONCLUSION 

 The goal of this research was to develop a prototype software framework for formulating 

spatio-temporal influenza (i.e. flu) outbreaks using Twitter. The proposed framework collected 

geo-tagged tweets that were generated within Ohio and processed by semantic techniques in 

Natural Language Processing to extract influenza related tweets. The prototype system was 

calibrated to maximize the detection of influenza using rules developed by different semantic 

similarity measurements. The resulting output from the prototype represented a visualization of 

potential spatio-temporal influenza patterns and spread which is a product of information 

extraction from the tweets. 

 Implementation of the prototype software framework used a three-tier system architecture 

with a thin web client and a resourceful server environment. The server side component 

comprises of data processing applications, a PostGIS extension that manages the spatial 

PostgreSQL database, and a web application. The data processing applications enabled daemon 

parallel computing (i.e. background processing) for meeting pseudo real-time data processing 

requirements.  The DBpediaSpotlight tagger which is based on the DBpedia ontology was used 

for the semantic tagging, while WS4J module was used for calculating semantic similarity 

scores. The WS4J Java module which is supported by WordNet ontologies was used to generate 

different semantic similarity scores from tags and synsets using WUP and RES algorithms. The 

similarity scores from both algorithms produced different individual and overall scores which 

were used for subsequent calibration.  The calibration used a total of 1400 randomly selected 

tweets that contained  a total of 107 influenza related tweets (i.e. positives) and 1293 non-

influenza related tweets (i.e. negatives). The calibration tweets were used to explore different 

rules from the semantic similarity scores for detecting influenza related tweets and for filtering 
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out non-influenza related content. The rule that generated the best outcome was associated with a 

total of 94.4% accuracy (ACC) and  F-measure value of 0.72. The execution of the rule extracted 

influenza related geo-tagged tweets that were used for development of influenza maps. The 

spatial implementation used GDAL and GeoTools open source tools for producing weekly 

influenza maps.  The influenza maps were programmatically published on GeoServer which is a 

web based geospatial data sharing server that allows map services to be used by standard clients 

such as web browsers and GIS desktop programs. In this prototype, the web application was 

developed for retrieval and visualization of influenza maps from GeoServer. The open source 

JavaScript libraries OpenLayers and GeoExt were used in the web application for displaying the 

web-based maps in a user-friendly environment. 

 In summary, this prototype system demonstrated a robust tool for real-time assessment 

and monitoring of potential influenza cases using Twitter. The prototype can be customized for a 

specific geographical region and visualization of spatio-temporal distribution of influenza over 

the web. Also, the system can be customized for other subject areas with improved 

functionalities such as dynamic manipulation of ontologies or formulating personalized sets of 

rules. The results of the influenza related content generated by the proposed framework were 

validated against weekly influenza related hospitalization records reported by ODH. Validation 

results showed some promising results. Although the volume of the influenza tweets generated 

by the prototype was consistently higher than influenza reported from hospitalizations, the 

Pearson’s correlations suggested existence of moderate correlations for the Southeast region (r = 

0.52), the Northwestern region (r = 0.38), and the Central region (r = 0.33). The Southwestern 

region shows a significant cross-correlation between influenza related hospitalizations time 

series and Twitter reported influenza cases time series with no lags (i.e. lag is 0). However, only 
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a lagged relationship can be seen in other regions. Further, it was discovered that influenza 

reported over Twitter has a better no-lag cross-correlation in regions which have a higher 

younger population. 

 Additional recommendation for improvement of the prototype include more advance 

processing and pre-processing of tweets, application of different ontological rules, application of 

better semantic similarity algorithms for the evaluation of similarity scores, and development of 

robust rules from similarity scores. For example, text mining techniques such as text clustering 

and sentimental analysis can be further explored for additional improvements of the system. 

Also, at larger geographical scale (i.e. urban centers) the system can be tested for highly 

populated cities such as New York or Chicago where the percentage of Twitter users is high and 

there is access to weekly influenza reports. 
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APPENDIX A: FIGURES 

 

Figure 1. System architecture. 
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Figure 2. Tweet pre-processing steps 

 

 

 

 

 

 

 

 

 

 



 
 

42 
 

 
 

a) 
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Figure 3. Semantic tagging of a tweet by a) DBpediaSpotlight web interface which maps URIs as 
search queries and b) and HTML results from the "Influenza" URI ontology shown as dictionary 

of descriptive terms. 
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Figure 4. An example of a confusion matrix for a binary classifier. 
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Figure 5. Calibration curve of semantic similarity scores for optimizing threshold “Word_WUP” 

value using F-measures generated by confusion matrices 
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Figure 6. Fluwitter – graphical user interface for visualization of influenza related tweets in Ohio 

 

 

 

 

 



 
 

46 
 

 
 

 

Figure 7. Seasonal influenza reporting regions in Ohio 
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Figure 8. Twitter derived influenza cases and influenza reported hospitalizations using regional 
weekly summaries in Ohio for the period of October 4, 2015 and April 02, 2016 
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Figure 9. Cross correlation between Twitter reported influenza cases and influenza related 
hospitalizations 
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Figure 10. Spatio-temporal pattern of Twitter derived influenza cases in Ohio from week  42 to 
week 49 (Oct 18 - Dec 12 2015). Very Low : 1 , Low : 2-3, Moderate : 4-5, High: 6-10, Very 

High : >= 11 
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APPENDIX B: TABLES 

Table 1. Attributes extracted from a tweet 

Field Name Type Description 

id 64 bit integer Integer representation of  unique tweet identifier 

text string Text content of the tweet 

source string Utility used to post the tweet. ex:- web, i-phone, android 

longitude float Longitude of the tweet originated location 

latitude float Latitude of the tweet originated location 

created_at Date and time UTC time when the tweet was created. 

place_id string Unique identifier of the tweet originated place 

place_name string Name of the tweet originated place 

place_type string Type of the place tweet originated in 

place_polygon string Polygon representing the message originated place 
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