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ABSTRACT 

 

Peter Gorsevski, Advisor  

 Leaf area index (LAI) is an important indicator of ecosystem conditions and an important 

key biophysical variable to many ecosystem models.  The LAI in this study was measured by 

Leica ScanStation C 10 Terrestrial Laser Scanner (TLS) and a hand-held Li-Cor LAI-2200 Plant 

Canopy Analyzer for understanding differences derived from the two sensors. A total of six 

different LAI estimates were generated using different methods for the comparisons.  The results 

suggested that there was a reasonable agreement (i.e., the correlations r > 0.50) considering a 

total of 30 plots and limited land cover types sampled.  The predicted LAI from spectral 

vegetation indices including WDVI, DVI, NDVI, SAVI, and PVI3 which were derived from 

Landsat TM imagery were used to identify statistical relationships and for the development of the 

Bayesian inference model. The Bayesian Linear Regression (BLR) approach was used to scale up 

LAI estimates and to produce continuous field surfaces for the Oak Openings Region in NW 

Ohio.  The results from the BLR provided details about the parameter uncertainties but also 

insight about the potential that different LAIs can be used to predict foliage that has been 

adjusted by removing the wooden biomass with reasonable accuracy.  For instance, the modeled 

residuals associated with the LAI estimates from TLS orthographic projection that consider only 

foliage had the lowest overall model uncertainty with lowest error and residual dispersion range 

among the six spatial LAI estimates.  The deviation from the mean LAI prediction map derived 

from the six estimates hinted that sparse and open areas that relate to vegetation structure were 

associated with the highest error. However, although in many studies TLS has been shown to 

hold a great potential for quantifying vegetation structure, in this study the quantified relationship 
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between LAI and the vegetation indices did not yield any statistical relationship that needs to be 

further explore.  
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 INTRODUCTION 

The ecosystems provide an important carbon sink or artificial reservoir by which 

atmospheric carbon dioxide taken by plants through photosynthesis is stored as carbon in 

biomass and soil (Dong et al., 2003; Hashimoto et al., 2012; Houghton, 2005;  Patenaude et al., 

2004; Turner et al., 2004). The process, known as carbon sequestration helps to offset sources of 

atmospheric carbon dioxide and could play a critical role in the mitigation of negative effects of 

climate change. In the United States, forest carbon sinks have been estimated to offset 16 % of 

total emissions from burning fossil fuels, but continued deforestation from natural and 

anthropogenic causes undermines future biomass stocks and other important carbon sink 

functions (USDA-FS, 2013).  Thus, quantifying and monitoring carbon stocks is of great interest 

for assessing forest biomass sinks for carbon sequestration as a part of global, regional, and local 

mitigation efforts (UN FCCC, n.d.).  

Net primary production (NPP) from forest biomass is one of the most important 

ecological parameters for estimating carbon stocks especially for large spatial scales (Cao and 

Woodward, 2002; Potter et al., 2011; Running et al., 2004; Turner et al., 2004; Zaehle et al., 

2006). NPP is a spatially distributed ecological parameter that represents the difference of carbon 

stored in a plant from the gross photosynthetic product which is adjusted for autotrophic 

respiration (i.e., the respiration releases a proportion of the absorbed carbon). NPP is estimated 

using different models of which the spatially measured leaf area index (LAI) is used as a key 

biophysical variable (Liu et al., 1999; Reich et al., 1999; Zheng and Moskal, 2009). The LAI is a 

dimensionless measure of canopy foliage content, defined as the amount of leaf area (m2) in a 

canopy per unit ground area (m2) (Zheng and Moskal, 2012b). This index measures the 
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photosynthetic surface area which is directly proportional to the NPP of a plant species 

(Davidson, 2002).  

There are many attempts to estimate the spatial distribution of LAI using sensor derived 

spectral responses through various remote sensing applications (Chen et al., 2002; Gamon et al., 

1995; Haboudane et al., 2004).  These spectral responses are measured in terms of vegetation 

indices derived from red and near-infrared (NIR) bands. The most profound derivation of LAI is 

from slope based spectral vegetation indices such as the Normalized Difference Vegetation Index 

(NDVI), expressed as the difference between the NIR and red bands normalized by the sum of 

those bands (Turner et al., 1999). The distance based vegetation indices use the perpendicular 

vegetation index (PVI) concept which aims to eliminate the effect of soil background over 

surfaces of incomplete vegetation cover. However, spatial variability in soil coverage within an 

image or satellite data set creates difficulties in their formulation for assessing vegetation cover. 

Improvements to the PVI have yielded other modified indices referred to as PVI1, PVI2, and 

PVI3.  Further, some indices such as Difference Vegetation Index (DVI) uses the soil line 

concept, which describes the typical range of soil spectral curve in red and NIR bi-spectral plots 

(i.e., the soil line is computed by simple regression of NIR against red band measurements for a 

sample of bare soil pixels) (Baret and Guyot, 1991; Gilabert et al., 2002, Huete, 1988; Kandwal 

et al., 2009; Richardson and Wiegand, 1977). In addition, indices such as Soil Adjusted 

Vegetation Index (SAVI) and Weighted Difference Vegetation Index (WDVI) have used ideas to 

correct for the soil noises which are greatly affected by common weather conditions such as soil 

moisture (Clever, 1988, Huete, 1988, Richardson and Wiegand, 1977).  
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Often those indices are calculated from imagery acquired either by multispectral sensors 

such as MODIS (Running et al., 2004), Landsat TM (Turner et al., 1999) and Landsat ETM+, or 

by hyperspectral sensors mounted in aircrafts or in satellites such as AVIRIS, CASI (Haboudane 

et al., 2002; Lee et al., 2004), and Hyperion (Bulcock and Jewitt, 2010).  The measured spectral 

responses are then converted to the LAI through implementation of empirical relationships with 

the “filed measured LAI.” However, the reliability and the accuracy of the LAI estimates depend 

on the accuracy of “in situ” measurements, the effect of land cover heterogeneity associated with 

the instrument pixel size resolution, the influence of the atmosphere, sensor and light source 

position, overlapping and clumping of leaves associated with the inclination and azimuth, and 

the obstruction of canopy components other than leaves (Zhao et al., 2005; Zheng and Moskal, 

2009).  

The “in situ” or field-based LAI quantification methods can be explained either as direct 

or indirect methods (Asner et al., 2003; Breda, 2003; Chason et al., 1991). The direct LAI 

measurement methods include destructive tree harvesting and non-destructive litter fall 

collection (Asner et al., 2003).  The vertical (Groeneveld, 1997) and inclined (Jonckheere et al., 

2004) point quadrat, and tree allometric relationships (Breda et al. 2003; Mencuccini and Grace, 

1995) are some of the contact indirect methods which are used to measure LAI. The non-contact 

indirect methods of LAI estimation include optical methods. The proportion of light penetrating 

through a canopy is a function of incident irradiance, canopy structure and species specific 

optical properties of the canopy. Therefore, in these optical methods, the measured quantities 

often yield two factors called gap fraction and gap size distribution as a proxy for LAI 

estimation. For example, Plant Area Index (PAI) (Neumann et al. 1989), Vegetation Area Index 

(VAI) (Fassnacht et al., 1994), Foliage Area Index (FAI) (Welles and Norman, 1991), or 
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Effective LAI (Le) (Chen et al., 1991) are indices measured based on gap fraction as a surrogate 

of ground based LAI measurements. Such indices do not consider the removal of the effect of 

stems, branches, and flowers (clumping effect) to the photosynthetically active leaf area 

(Jonckheere et al., 2004) as well as the  influence from zenith and azimuth of both the sun and 

the leaves (Jonckheere et al., 2004). 

Hemispherical photos (Asner et al., 2003; Chen et al., 1991; Jonckheere et al., 2004), and 

instruments such as LAI-2200 plant canopy analyzer, Demon, Ceptometer, TRAC, and other 

hybrid instruments such as Multiband Vegetation Imager (MVI) are a few examples that are used 

to estimate the LAI indirectly through implementation of optical methods (Jonckheere et al., 

2004; Zhao et al., 2011). The gap fraction and gap size distribution based optical methods show a 

wide range of heterogeneity with respect to each other (Chen et al., 1997; Pacheco et al., 2001; 

Zhao et al., 2005) as well as to the direct tree harvesting or litter fall collection methods (Dewey 

et al., 2006; Van Gardingen et al., 1999) which are considered as the most accurate methods of 

LAI quantification (Dufrene and Breda, 1995). In addition, most of these indirect methods show 

correlations only with the broadleaf forests, and therefore, they are not applicable to the needle 

leaf forests (Asner et al., 2003; Chen and Chilar, 1995).  

More recently, terrestrial laser scanning (TLS), also known as ground-based LiDAR 

(Light Detection and Ranging) has been used as an alternative indirect method for quantifying 

aboveground biomass and LAI (Côté, 2009; Hosoi and Omasa, 2007; Lim et al., 2003; Zhao el 

al., 2005). The data collected by this emerging remote sensing method represents direct 

measurements of three-dimensional (3-D) distribution of plant canopies at individual tree or 

stand levels which is difficult and costly to obtain through traditional data collection. The TLS is 
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used for close-range and high-accuracy applications which provide accurate measures of 

distances to biomass using a large number of sampling laser beams. The laser beam’s energy 

interacts with the biomass and other objects, and reflects a partial amount of the energy while the 

rest of the energy is lost due to absorption or transmission. The proportion of energy that returns 

to the scanner represents discrete measurement and intensity values of a point cloud (Hosoi and 

Omasa, 2006; Kwak et al., 2007; Moaskal and Zheng, 2011; Zheng and Moskal, 2012a; Zhao et 

al., 2005).  The resulted point cloud is a function of different parameters such as the resolving 

power of individual laser pulses (Van Der Zande et al., 2006), the zenith and azimuth angular 

resolution of the instrument (Zhao et al., 2005), the maximum resolvable distance of targets (Van 

Der Zande et al., 2006), sensor position and number of scans per plot (Lovell et al., 2011; Yao et 

al., 2011; Zheng and Moskal, 2012b), and the canopy structure defined by the homogeneity, 

heterogeneity, and the species composition (Henning and Radtke, 2006; Zheng and Moskal, 

2012b).  The main advantage of TLS in LAI estimates is the high accuracy of data cloud 

measurements that are not influenced by the sun orientation as well as the applicability to 

broadleaf and needle leaf forest plots at different stand level scales (Chasmer et al., 2006; Huang 

and Pretzsch, 2010; Zhao et al., 2005; Zheng and Moskal, 2012a).   

The field-based measurements are often correlated with satellite observations from 

Landsat or MODIS to scale up LAI and to produce continuous field surfaces used for NPP 

estimates.  However, these predicted LAI shows different levels of uncertainty that influences 

the estimates of forest carbon. The uncertainty in predicted quantities of LAI arises from 

different sources including data collection, processing and analysis of image and ground data, 

and model development (Foody and Atkinson, 2002). For example,  some of the  TLS-based 

uncertainties arise from the complex leaf structure originated by the spatial variability, shadow 
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effect, leaf inclination, and the effect of non-photosynthetic tissues (Hosoi and Omasa , 2007; 

Jupp et al., 2009; Moskal and Zheng, 2009 ;Van Der Zande et al., 2006). Additional uncertainties  

are enhanced by other influencing factors such as lack of knowledge about specific parameters, 

selection of explanatory variables and models, or other factors used for up scaling from finer to 

courser spatial resolutions (Jupp et al., 2009; Wu & Li, 2006; Zheng and Moskal, 2009; 

Richardson et al., 2011). 

The lack of knowledge about specific LAI estimates and difficulties of identifying local 

uncertainties and errors from imagery requires new methods that improve current frequentist 

approaches (Datcu et al., 1998; Lasslop et al., 2010). The frequentist statistics use standard 

interpretation of probability where the event's probability is limited by its relative frequency and 

draws conclusions from likelihood estimates from the sample data (McCarthy, 2007). The 

Bayesian inference method expresses uncertainties in the model parameters in terms of 

probability. The parameter uncertainty quantification is achieved by using probability 

distributions for both priors and posteriors. The Bayesian inference method has been used in a 

number of discipline-specific applications such as remote sensing (Atkinson and Lewis, 2000), 

geographic information science (Crosetto and Tarantola, 2001; Grêt-Regamey and Straub, 2006) 

and ecology (Gorsevski, 2013; Iizumi et la., 2009; Patenaude et al., 2008; Wintle et al., 2003).  

Thus, the aim of this project is to generate estimates of tree leaf area based on small-

footprint LiDAR-derived measurements and to quantify the uncertainty associated with the 

parameter estimates in the prediction of LAI using Bayesian inference. The proposed approach 

intends to address the following three objectives: (1) to compare different ground-based 

measurements that are used for quantification of LAI estimates; (2) to develop predictive models 
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that quantify spatial distribution of LAI from correlations between ground-based measurements 

and satellite derived indices; and (3) to account for uncertainty in parameter estimates associated 

with the prediction. The first objective intends to compare measurements from LAI-2200 Plant 

Canopy Analyzer and TLS C10 instruments which will be used to develop the spatial distribution 

model of LAI with satellite based vegetation indices. Finally, Bayesian inference using Markov 

Chain Monte Carlo (MCMC) simulation will be implemented to account for the uncertainty of 

parameter estimates through posteriors derived from prior probability from vegetation indices. 
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CHAPTER I. STUDY AREA 

The study area is located in the Oak Openings Region in NW Ohio and extends into SE 

Michigan (Fig.1). The Oak Openings Preserve Metro Park is a rare ecosystem with an 

approximate area of 15 km2 in the Lake Erie watershed and hosts a range of flora and fauna 

diversity. The region supports a mosaic of Great Lakes habitats including wet prairies, white oak 

savannas, Midwest sand barrens, black oak savanna with lupine barrens, and black oak  and 

white oak woodland communities that are developed on a series of post-glacial beach ridges and 

swales. The major ecosystem in the region is the white and black oak savannas with both 

homogeneous and heterogeneous deciduous stands with a small mixture of conifers. A few 

developed areas are also present at the boundary of Metro Park. 

  The white and black savanna region is rich in white oaks (Quercus alba) and black oaks 

(Quercus velutina) whereas the Grassland ecosystems host species such as bluestem 

(Schizachyrium scoparium) and sandbur (Cenchrus sp) as well as various species of Panicum, 

big bluestem, (Andropogon gerardii), and  Indian grass (Sorgastrum nutans). The sandy 

ecosystems are habitats for species such as Cafringed gentian (Gentianopsis crinita), goldenrods 

(Solidago sps.), blazing star (Liatris spicata), and cowbane (Oxypolis rigidior). In addition, this 

small park region provides  important habitats to rare organisms including federal and state 

endangered species such as the Eastern Whip-poor-will (Caprimulgus vociferous) as well as the 

Karner Blue Butterfly (Lycaeides melissa) and persius Dusky Wing (Erynnis persius) that live on 

another rare plant species called Wild Blue Lupine (Lupinus perennis). These natural dispersions 

of ecosystems are controlled by several geological and climatological factors. Post-glacial beach 

sand belt deposited on bedrock of either Dolomite or Limestone with a general elevation range of 

180 to 230 m act as the major geological basement of the region (Schetter, 2012). The region 
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shows a humid continental climate with an annual temperature range of 10 °C to 23 °C and a 

mean annual precipitation of 81 cm. The average canopy height and the stand age are 24 m and 

45 years respectively (ORNL, 2013; Schetter, 2012).  
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CHAPTER II. DATASETS AND METHODS 

2.1. Terrestrial LiDAR data collection and pre-processing 

 The Terrestrial Laser Scanner (TLS), Leica ScanStation C 10, was used to acquire point 

cloud data during the summer of 2013 between June and August.  The Leica C 10 scanner 

measures the traveling time of the emitted laser pulses and calculates the distances of the objects.  

The high-speed laser pulses are green waves of 532 nm with measurement accuracy of 2 – 6 mm. 

The scanner measurements are generated in a stepwise fashion by fast mirror rotations in 

horizontal and vertical directions.  The field of view is 360 degrees in the horizontal direction 

and 270 degrees in the vertical direction.  In addition, the Leica C 10 can capture images using a 

built-in camera that provide photorealistic 3-D model of the colored point clouds.   

A total of 30 plots were scanned using a total of four scans for each plot to reduce the 

occlusion effect (Fig. 1).  The summary scan layout for each location is shown in Fig. 2 (a). The 

position of four scans were set where S1  is the plot center ( home scan) and the other three scans 

S2, S3 and S4 are the lateral scans placed at the border of the plot that is approximately at the 

circumference of 50 m radius from the  center.  In addition, four target poles were set as 

reference points (T1, T2, T3 and T4). The effective scanning range for detecting objects was 

limited to 100 m from the home scan. The auto adjusting, high-resolution integrated digital 

camera was set to capture the full range multi images simultaneously with point cloud data 

acquisition. To minimize the effect of double scans of each object, the data were collected during 

low wind conditions. 

Co-registration was used to merge or fuse the home scan point cloud with the point 

clouds of the three lateral scans using Cyclone 8.0 software (Leica-Cyclone, 2013).  The co-
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registration was supported by reference targets which were used to register and align the multiple 

scans with the reference coordinate frame. The permitted mean absolute error (MAE) associated 

with the co-registration was set to less than 0.026, which is automatically calculated by the 

software. The origin of the reference coordinate frame (X0, Y0, Z0) was set at the center of the 

home scan, which represents the mapping coordinate system measured by Yuma Trimble. Fig. 3 

displays a sample co-registered scan derived from a total of four individual scans. After 

removing the background noise the point clouds were segmented into smaller 3-D cylinders. The 

cylinder base of the original point cloud was centered at the home scan and was placed at 1 m 

height above the ground. This was done to avoid groundcover noise and for other consistency 

associated with the LAI-2200 data collection.  

2.2. LAI-2200 plant canopy analyzer data collection 

The LAI-2200 Plant Canopy Analyzer is a passive sensor, which is used to compute LAI 

among variety of other canopy structure attributes from radiation measurements. The instrument 

integrates a fish-eye optical sensor with five silicon detectors arranged in circular rings that 

sample radiation above and below canopy at five zenith angles simultaneously. The LAI-2200 

measurements are acquired by leveling and viewing the sky, where detector 1 measures 

brightness directly overhead e.g., 7°, while detector 5 measures brightness of a ring centered at 

68° zenith angle. The transmittance of below canopy reading is normalized by corresponding 

above canopy reading to calculate the LAI. The most accurate measurements are collected during 

the diffuse sky conditions but other alternatives for data collection include different device 

setting which use preselected view caps and masks or data collection that is carried out early 

mornings or late afternoons.  
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Within each site, a total of 9 observations per plot were collected by the LAI-2200 Plant 

Canopy Analyzer. Fig. 2 (b) shows the location of the LAI observations which are placed along 

eight principal compass directions (north, northeast, east, southeast, south, southwest, west, 

northwest) positioned and centered from the home scan. During the data collection process, to 

account and minimize effect of sunlit surfaces, heterogeneity of forest plots as well as the 

operator being in the field of view all the measurements used a 180° cap to mask the 

obstructions. At least one above canopy measurement that corresponds to each plot was acquired 

during the LAI- 2200 data collection. The below canopy collection included measurements from 

the areas of dense vegetation and sparse vegetation separately to minimize the edge effect. The 

two outermost ring readings (53° and 68°) were masked in the LAI calculation as open areas are 

not large enough to use those two rings to collect above canopy readings within the Metro Park.  

2.3. Point cloud slicing 

 The initial point cloud from each 3-D cylinder consists of large number of points and 

creates difficulties with the processing of the data.  Thus, to reduce the number of points in the 

cloud the data were segmented by slicing. The method applied here implemented circular point 

cloud segmentation using horizontal slicing direction.  The sliced cross sections represent small 

cylinders with a base circle of 30 m radius and slices of 0.25 m thickness. Fig. 3 illustrates the 

horizontal slicing direction of the point cloud cylinder. The 0.25 m thickness of the sliced 

cylinders was selected arbitrarily but intended to minimize the point overlap associated with the 

conversion from 3-D real space into 2-D model space and to avoid a very thin slices with 

inadequate feature descriptions.  
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 Additional hemispherical point cloud segmentation was implemented to two of the 

sample cloud data scans (same location) for the purpose of threshold identification using trees 

with foliage (leaf-on) and without foliage (leaf-off). Both cylinders with s base circle of 30 m 

radius were clipped into 2 m thick hemispheres. The 2 m segmentation thickness is an arbitrary 

value that was aimed to reduce beam return intensity variation. Fig. 4 show the hemispherical 

segmentation concept of the point cloud cylinder when foliage was present. The hemispherical 

segmentation was used to calibrate the intensity within each plot and to discern foliage from 

other non-photosynthetic material. 

2.4. Separation of photosynthetically active from non-active components 

 The separation of non-photosynthetic components such as trunks and branches from other 

photosynthetically active material was accomplished on the basis of laser beam return intensities 

and estimates of proper separation thresholds. The intensity data is useful for data processing and 

visualization of the data ranges. For example, the solid targets (i.e., non-photosynthetic material) 

reflect strong incoming pulses which produce return pulses with sharp peaks. However, the 

return intensity is also a function of portion of beam hitting the target, surface homogeneity of 

the target, distance between the instrument and the target, angle of incidence and bidirectional 

reflectance distribution function (BRDF) of the target within the field of view (Beland et al., 

2011).  

 To separate the non-photosynthetic from the photosynthetic components this approach 

required identification of multiple intensity threshold values. Thus, assuming that completely 

illuminated targets by the laser beam had Lambertian scattering properties, the intensities of the 

return signal became independent regardless of distances between the instrument and the target. 
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Also, since laser return intensity values recorded by the TLS were negative, an arbitrary value of 

2000 was added to all measurements for the positive conversion and referred here as “modified 

intensities” (Eitel et. al., 2010). Fig. 5 (a) shows the relationship between modified intensity and 

distance. The figure shows that the intensity is directly influenced by the distance. At very close 

range (< 5 m) the intensity is low because the TSL requires a minimal operating distance but the 

general trend suggests that the TSL intensity decreases as the distance increases.   

 Fig. 5 (b) shows the probability density functions from beam intensity returns using the 

leaf-on and leaf-off point clouds. The hemispherical point cloud segmentation plot was used to 

generate the count of beam intensity returns. The 2 m thick hemispheres were proceeds by data 

binning technique for grouping and organizing the 3-D real space of the cloud. The vertical line 

in the plot is associated with the return intensity and represents the threshold value that separates 

foliage from wood. In the figure, the threshold value provides minimized misclassification of 

foliage and wood intensity returns. In the plot the LW are points of leaves misclassified as wood 

while WL represents points of wood that misclassified as leaves. 

2.5. LAI estimates from orthographic and stereographic projection of point cloud data 

 The 3-D real space of each cylindrical segment was projected into 2-D model space (i.e., 

the X-Y plane) to generate orthographic projection view of the TLS data. The aim of this 

orthographic projection is to simplify the mathematical processing of the point cloud data and to 

help with the LAI estimates. Fig. 6 (a) shows a sample 2-D model space output of the 

orthographically projected TLS point cloud.   Fig. 6 (b) shows an example of the final raster 

image that was generated from orthographically projected 2-D point clouds and used for the LAI 

estimates. The images were rasterized by point to raster algorithm using a cell size of 4 cm. The 
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cell size was determined from the distance and point spacing relationship. The Fig.7 shows the 

graph of distances to the object against the spacing between two adjacent TLS points scanned 

from the object. The data set was developed by scanning a static article by changing its distance 

in 5 m increments to the TLS. The scanning was performed in controlled indoor environment to 

avoid the noise due to wind. The maximum point spacing of 0.04 m shown on the y-axis which is 

the coarsest resolution used for the analysis of orthographic images. Two sets of 2-D 

orthographic images, one from points before removing woods and the other after removing 

wooden sections (leaves only) were produced following this procedure.    

 To generate the hemispherical images from TLS point clouds, the stereographic 

projection was implemented. The hemispherical image production required Cartesian point cloud 

coordinates to be converted to spherical coordinates and subsequently projected into a surface of 

a sphere with 1 m radius (Zheng and Moskal 2012b). Fig. 8 (a) represents a unit sphere of the 

projected TLS points. The points in the unit sphere surface were stereographically projected to 

generate a 2-D model space.  Fig. 8 (b) shows the 2-D raster image derived from the unit sphere. 

Two different sets of stereographic images were generated for representing foliage and wood 

material separately.  

The LAI estimates for the projected raster images were calculated by the Gap Light 

Analyzer (GLA) 2.0 software (Frazer et al., 1999). The GLA freeware has been developed for 

processing hemispherical photos using daily diffuse, direct and total solar radiation transmittance 

that is compared for specified sky conditions and calendar dates for each hemispherical location. 

The GLA implements a linear averaging algorithm (Welles and Norman 1991) based on a 
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Poisson probability distribution and assumes that foliage is randomly distributed for the 

calculation of the LAI.  

2.6. Vegetation Indices 

 Landsat TM images recorded on 06 June 2011 that coincide with an extensive ground 

data collection were acquired for the study area and used to generate spectral vegetation indices.  

Because the field measurements are time consuming, expensive, and inconvenient for large scale 

monitoring, spectral vegetation indices are often used to estimate LAI.  Some of the advantages 

associated with the spectral vegetation indices are the simplistic derivation from satellite imagery 

and their robustness in reduction of spectral effects caused by external factors including 

atmosphere and soil backgrounds. In this study, for the prediction of LAI, multiple vegetation 

indices were computed and investigated. The two band (red and NIR) combinations of indices 

including both slope based and ratio based were computed and analyzed. The values of the cells 

from the vegetation indices were extracted by the coordinates of the plot centers.  The point 

extraction used bilinear interpolation which is a distance-weighted average that used values from 

the four nearest pixels. The relationship between the LAI estimates and vegetation indices was 

analyzed by generalized linear models (GLM) for the selection of significant predictor variables 

which were used in a Bayesian framework. Table 1 shows the significant vegetation indices (p < 

0.05) that were used for the development model of LAI estimates.  

2.7. Bayesian linear regression framework 

 The Bayesian linear regression framework for parameter estimation consists of three key 

components including prior distribution, the likelihood function and the posterior distribution.  

The implementation of Bayesian linear regression (BLR) requires specification of the likelihood 
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for the data, the form of the relationship between response and explanatory variables, and the 

prior distributions for regression coefficients or any unknown (nuisance) parameters. A simple 

Bayesian model is stated as:  

       𝑦𝑖  ≅   𝑁(𝜇,𝜎2), 𝑖 = 1, … ,𝑛 

𝜂 =  𝛽0 +  � 𝛽𝑝
𝑘

𝑗=1
𝑥𝑖𝑝 

𝛽𝑝  ≅   𝑝𝑟𝑖𝑜𝑟𝑠 

 

 

       (1) 

where 𝑦1,𝑦2 , … , 𝑦𝑛 are the response variables for the random component that are assumed to be 

independent and normally distributed, the systematic component combines the covariates 𝛽𝑝’s 

that form the linear predictor represented by 𝜂 = 𝛽0 + 𝛽1𝑥1+𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝, and finally the 

systematic and the random components are linked together via a link function 𝑔(𝜇) = 𝜂. For 

GLMs the function g is taken to be the identity link so that we assume 𝜇 = 𝜂. Using E to denote 

the expectation operator for calculating the mean the assumption is stated as: 

𝜇 = 𝐸(𝑦) = 𝛽0 + 𝛽1𝑥1+𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝        (2) 

Finally, the Bayes’ rule is used to compute the posterior distribution of the continuous 𝛽𝑝 

parameters where beliefs about the parameter are represented as probability density functions or 

pdfs. The Bayes’ rule states that the posterior pdfs of the parameters is proportional to the 

product of the likelihood function and the prior pdfs as: 

𝑝(𝛽,𝜎2|𝑦,𝑋)  ∝  𝑝(𝑦|𝑋,𝛽,𝜎2)𝑝(𝛽|𝜎2)𝑝(𝜎2) 

 

       (3) 
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where 𝑝(𝛽|𝜎2)𝑝(𝜎2) is the prior distribution and the 𝑝(𝑦|𝑋,𝛽,𝜎2) is the likelihood given that 

the posterior distribution of 𝑝(𝛽,𝜎2|𝑦,𝑋). Thus, the posterior distribution of each parameter is 

determined through Bayes’ rule and defines the overall belief and uncertainties associated with 

the parameters. 

 In this study, the LAIs measured by the Plant Canopy Analyzer and derived from the TLS 

data represent the dependent variables while the significant vegetation indices that were scaled 

between 0 and 255 represent the independent covariates in the development of the predictive 

models. The predictive models were developed by implementation of BLR framework which 

calculated uncertainties for the significant covariates from posterior parameter distributions with 

95% credible intervals. The Open source Bayesian Inference Using Gibbs sampling version 3.2.2 

(OpenBUGS) software (MRC Biostatistic Unit, Cambridge, UK; http://www.mrc-

bsu.cam.ac.uk/software/bugs/) (Lunn et al., 2000) was used to calculate the uncertainties in 

parameter estimates. The software runs the Bayesian model with MCMC simulation to generate 

the results of the posterior parameter estimates using random samples which are conditioned on 

previous estimates in each implemented chain.  In this study, multiple simultaneous chains were 

tested to resample the posterior distribution and to understand convergence. The convergence 

was depicted from overlapped and intertwined chain patterns from history and trace plots. After 

the determination of the convergence, different iteration trails were tested to produce posterior 

estimates. The reported simulations for the estimated regression coefficients here are based on at 

least 50,000 iterations. The simulations also used different burn-in thresholds for finding 

acceptable starting points and thinning rates to increase parameter mixing and reduce high 

posterior correlations between parameters. Finally, Moran’s I test was used to test the spatial 

autocorrelation from the residuals for all the models. 
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CHAPTER III. RESULTS 

3.1. Comparison of LAI estimates 

Fig. 9 shows the comparison of the six different LAIs that were measured by the Plant 

Canopy Analyzer and calculated from the TLS measurements. The LAI-2200 and the Le 

represent the measurements derived from the hand-held Plant Canopy Analyzer while the rest of 

the LAIs were derived from TLS measurements. The estimates derived from the Plant Canopy 

Analyzer used caps with narrower view (e.g., 45˚ field of view) to depict the canopy that is most 

likely to be foliage. Thus in the case of the LAI-2200 the resulted values represent the canopy 

which is automatically corrected for clumping. The effective LAI values (Le) were derived by 

adjusting the LAI-2200 estimates by apparent clumping factor at each location.  On the other 

hand, the TLSO are the LAI estimates derived by orthographic projection while the TLSS are the 

LAI estimates derived by stereographic projection. Unlike TLSO and TLSS which estimate only 

the foliage, the TLSO_W and TLSS_W estimate both foliage and wooden biomass.  

In Fig. 9, the scatterplot results are based on samples from all 30 plots and show strong 

overall correlations between the six different LAI estimates.  The bivariate Pearson correlation 

coefficients (r) range between 0.51 and 0.99 which are shown above the diagonal. The highest 

observed correlation is between the estimates from the Plant Canopy Analyzer (LAI-2200 and 

Le) while the lowest correlation is between the estimates from TLSO_W and TLSS_W. However 

estimates that separate photosynthetically active from non-active components derived by 

orthographic projection show stronger correlation (r = 0.88) than estimates derived by 

stereographic projection (r = 0.82). In addition, the scatterplot results show that the hand-held 

Plant Canopy Analyzer has slightly stronger correlation with the TLS orthographic projection 
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estimates which include foliage and wooden biomass (r = 0.60). The TLS stereographic 

projection that considers only foliage correlates better with the hand-held Plant Canopy Analyzer 

(r = 0.61). However, reasonable correlations are present between the different TLS estimates. 

In the figure, the values of the LAI estimates shown on the plot axis are also different. 

The low values are most likely to represent the sparse vegetation and canopy gaps while the high 

values are most likely to represent the dense vegetation.  The lowest values are associated with 

the orthographic projection that considers only foliage (0.5 - 2.0) while the highest values are 

associated with stereographic projection (3.5 – 8.5) that includes foliage and wooden biomass. 

The range of values from the hand-held Plant Canopy Analyzer is the most similar to the 

stereographic projection that includes only foliage.  

In this study, it is apparent that the hand-held Plant Canopy Analyzer and the TLS 

instrument yielded different LAI ranges and estimates. To evaluate the absolute accuracy of each 

method for LAI estimates and the superiority of the methods is difficult because it requires a 

reference measurement such as destructive sampling.  In the study area there is no previous 

estimates or reference measurements from destructive sampling to generate absolute LAI. As 

such, it is difficult to draw a firm conclusion regarding the relative accuracy of the different 

techniques that were used to generate LAI estimates or the advantages associated with the of the 

new laser scanning methodology.  However, on the positive side the relatively strong 

relationships between different methods holds several advantages that can be used to correct 

expensive and labor intensive measurements from TLS by less expensive and portable LAI-2200 

instrument. Additionally, the use of less expensive instrument simplifies the data collection and 

processing that can be corrected to resemble TLS data collection that is adjusted for foliage or 
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wooden biomass. Another aspect that needs to be explored is the applicability of the estimates. 

For instance additional field measurements can be used for understanding the fluctuations of LAI 

ranges with different land cover or vegetation structure.     

3.2. Development of LAI models  

The results from the BLR are shown in Table 2. The table shows the predictive models, 

the significant covariates, the coefficients and their posterior distributions for the six LAIs. As 

shown, the number of significant covariates (p < 0.05) in the predictive LAI models differs. 

Interestingly, almost all the models derived from LAI measurements that separate foliage from 

the rest of the biomass are more complex than the models derived from LAI measurements that 

consider both foliage and wooden biomass. For instance, the models derived from the hand-held 

Plant Canopy Analyzer (i.e., LAI-2200 and Le) use only one significant covariate which is 

WDVI. The purpose of the WDVI covariate is to enhance vegetation signals by minimizing soil 

background effects through red and NIR bands. The models derived from the TLS measurements 

that include both foliage and wooden biomass use only one significant covariate (WDVI) in the 

case of the orthographic projection (TLSO_W) and two significant covariates (DVI and SAVI) 

in the case of the stereographic projection (TLSS_W). Finally, the two predictions associated 

with LAI that involve only foliage (Models 4 and 6) are the most complex and have identical sets 

of significant covariates including NDVI, SAVI, and PVI3. All those indices in Models 4 and 6 

are commonly used to correct the influence of soil brightness at areas with low vegetation cover. 

In addition, the covariates used in the models consist of at least one vegetation index (i.e., NDVI) 

which depicts the abundance of green biomass as a function of red to NIR transmittance ratio.  
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The residuals from the predictive models are shown in Fig.10 where the predicted LAIs 

are plotted on the x-axis while the residuals are plotted on the y-axis. As shown in the plots the 

models that involve both foliage and wooden biomass predict values with higher residual ranges.  

For instance, the LAI estimates that consider foliage and wooden biomass have considerably 

more scatter than the estimates that consider only foliage.  The predicted values associated with 

the orthographic projection (TLSO) that consider only foliage, have the least error among the six 

different models. The largest modeling error appears to be with the measurement generated by 

the hand-held Plant Canopy Analyzer. 

Furthermore, the assessment of the model’s residuals for spatial autocorrelation used 

Moran’s I statistics shown in Fig.11. The sloped regression lines are plotted for all graphs using 

standardized predictions. The graphs are divided into four quadrants: high-high (upper right) and 

low-low (lower left) for positive spatial autocorrelation; and high-low (lower right) and low-high 

(upper left) for negative spatial autocorrelation. The positive spatial autocorrelation signifies 

occurrences of neighboring areas which are similar while the negative spatial autocorrelation 

signifies occurrences of neighboring areas which are dissimilar. The trends of the sloped 

regression lines suggest that the top three plots are most likely to be associated with positive 

autocorrelation while the lower three with negative autocorrelation . However, the inference for 

the Moran’s I test which used permutation procedure against the null hypothesis indicated no 

presence of spatial autocorrelation for all models based on p > 0.05 values. 

  Fig.12 illustrates the spatial predictions of the LAIs developed by the six models from 

Table 2. The LAI estimates in the plots have been scaled between 0 and 6 for visualization and 

comparison of spatial patterns generated from the models.  The top three plots of Fig. 12 (a), (b), 
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and (c) which were derived from the WDVI correlations show similar predictive patterns. For 

instance, in those plots the abundance of low LAI (< 2) values across the study area is strongly 

emphasized especially in open areas, sparse canopy, and coniferous stands. Although high LAI 

(> 4) predictions are also present, the high LAI areas are constrained by smaller geographical 

areas that have homogeneous deciduous forest with dense canopies. The intermediate LAI values 

are most likely associated with sparse deciduous forests. The low LAI predictions associated 

with DVI and the SAVI covariates shown in Fig. 12 (e) depict large contiguous areas which are 

water bodies, forest openings and savannas. However, this model does not differentiate between 

the dense and the sparse vegetation. Finally, the plots in Fig. 12 (d) and (f) which predict foliage, 

derived from NDVI, SAVI, and PVI3 show different predictive patterns from the rest of the 

plots. The plots do not emphasize the strong discern between vegetation structure especially the 

difference between open areas and dense forest stands.  

3.3. Uncertainty of parameter estimates 

The results in Table 2 present the posterior inferences of mean, standard deviation, 

median and 95% credible intervals of all the parameters considered within 2.5% and 97.5% 

range. The positive coefficients of parameter estimates describe that the LAI will increase as the 

values of the predictor variable increases. The negative coefficients display the inverse 

relationship of the predictors with the LAIs. Based on the standard deviation and the range of 

coefficients within 95% credible intervals illustrated in the Table 2, all the models which use a 

single predictor variable show a very low variation or the uncertainty. The highest uncertainty or 

the deviance around mean was observed in the parameters for Model 6 which is the 

stereographic projection that includes only foliage. From the three models which are associated 

with WDVI, the lowest uncertainty resulted in the Model 3 (SD = 0.002) which is the 
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orthographic projection with foliage and wooden biomass. The highest uncertainty resulted from 

the hand-held Plant Canopy Analyzer derived data which is corrected for apparent clumping 

effect (SD = 0.004). The NDVI uncertainties were relatively lower for the orthographic 

projection than for the stereographic projection. The SAVI and the PVI3 uncertainties had 

similar pattern as NDVI.  

 Fig. 13 (a) and (b) illustrates the mean LAI prediction and its standard deviation from the 

six models. The values associated with the mean LAI in Fig. 13 (a) vary between 0 and 7 and the 

histogram that accompanies the figure shows the distribution of the mean LAI values. The 

histogram show that the LAI estimates are slightly skewed to the left and most of the estimates 

range between 3 and 5. The predicted LAI estimates appear to be consistent with the generated 

expectations based on the very few forest openings and relatively well forested area.          

The standard deviation map in Fig. 13 (b) shows the spatial uncertainties from the predictions. 

The histogram in the figure shows the standard deviation in terms of departure from the mean 

estimate. The most pronounced uncertainties (reddish and orange regions) of LAI estimates 

appear to have been generated by under predicted values but the map shows uncertainties 

generated from over predicted estimates especially in open areas. However, the highest 

uncertainty was observed in the areas with very low vegetation density associated with conifers 

and mixed forests (the yellowish regions).   
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CHAPTER IV. DISCUSSION 

The results from this study revealed that field measured LAI from the hand-held Plant 

Canopy Analyzer and TLS instrument are highly correlated. TLS based LAI estimates can 

clearly overcome limitations of the hand-held method and separate foliage from wooden material 

but also the high correlations suggest that there is a chance for obtaining the same results from 

the hand-held method in conjunction with empirical modeling.  However, there are many 

differences between the two approaches that would require additional future work. For instance 

the TLS is invariant to light incident angle but other conditions such as wind or foliage 

heterogeneity may influence the estimates. Also the work reported here is based on implemented 

random data sampling approach but accounting and stratifying for different vegetation types, 

structure and forest associations perhaps would improve the understanding of the relationships 

between the LAI estimates.   

The significance of several Landsat TM derived vegetation indices including WDVI, 

DVI, NDVI, SAVI, and PVI3 was used for the BLR model development (Boegh et al., 2002, 

Eklundh et al., 2003, Gong et al., 1995). Although these indices detect the vegetation based on 

the same red and NIR signals, they are differentially impacted by the canopy homogeneity, 

structure, gaps and bare soil as well as topography. For example, the NDVI detects the green 

vegetation and does not consider the soil noise. Also, the NDVI is mostly independent from 

topography and it is insensitive at areas with more than 80% vegetation cover (Qi et al., 1994). 

The WDVI, SAVI, DVI and PVI3 use different implications not only to detect the vegetation but 

also to correct the influence of soil brightness. The SAVI is sensitive for a high range of 

vegetation densities as well as soil noise levels where the WDVI has limitations at areas with 

fewer gaps (Qi et al., 1994).  
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The modeling results obtained from the combination of indices NDVI, PVI3 and SAVI 

that predict only foliage maybe the most comprehensive as the NDVI captures the green 

intensity, the PVI3 corrects the vegetation signal for soil brightness and the SAVI is sensitive for 

a long range of soil and vegetation conditions. Such results are implicative of capturing LAI 

based on density and gap distribution. This is also supported by observing forest patterns and 

heterogeneity from imagery but some of the main limitations with those indices is the 

differentiation between vegetation types such as conifers and deciduous and forest structure.  

This differs from the predictions that do not distinguish between foliage and wooden biomass 

where only WDVI is used in the predictions. The models generated by the WDVI do not capture 

adequately the presence in the canopy gaps. Also, the modeled residuals suggested that the 

spared of residuals is the highest with the WDVI especially from measured LAI by the hand-held 

Plant Canopy Analyzer. On the other hand the foliage models were associated with the lowest 

error and spared of residuals. Therefore, one of the benefits from the TLS-based estimates is to 

quantify LAI associated with foliage using satellite-based products.  

Furthermore, the uncertainties with parameter estimate were different but with the 

increase of model complexity the uncertainties in the parameters also increased. At this point it is 

not clear which of the vegetation factors (i.e., including distribution, heterogeneity, structure, and 

type of vegetation) influenced the uncertainties of the LAI estimates the most. However, the 

advantage of this methodology is the ability to identify and quantify the uncertainties while 

considering the factors that influence LAI estimates. A detailed future study with different 

sampling strategies that involve the structure and heterogeneity is required to explain the 

influence of these factors and LAI predictions separately.     
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CHAPTER V.  CONCLUSION 

Field measurements from LAI 2200 Plant Canopy Analyzer and terrestrial laser scans 

from Leica ScanStation C10 were used in this study in order to measure and predict LAI in the 

Oak Openings region in NW Ohio. The TLS collected point cloud data from a total of 30 plots 

by using four scans per plot. The co-registered and processed cloud data was used to separate the 

photosynthetically active from non-active components and to produce stereographic and 

orthographic projection models for quantifying LAI. The measured and the predicted LAI were 

used for comparisons of LAIs, model development, and for quantifying uncertainties associated 

with the predictions.  

A total of six different LAIs were compared to examine differences and relationships 

between the estimates.  The results suggest strong overall correlations between the six different 

LAI estimates but since there is no reference measurements it is difficult to evaluate the absolute 

accuracy of the individual methods.  In addition a total of six different BLR models were 

developed using the relationships between LAIs and vegetation indices that were derived from 

Landsat imagery. The advantage of the Bayesian approach is that the iterative calculation result 

in probability distributions of the posterior estimates of the parameters which are used for 

through assessment of uncertainties. The BLR models suggested that the model complexity 

increases for LAI predictions of foliage compared to the prediction of both foliage and wooden 

biomass. For instance, the LAI models associated with the foliage used NDVI, SAVI, and PVI3 

covariates while the LAI model associated with the foliage used only WDVI for the hand-held 

Plant Canopy Analyzer and SAVI and DVI for the TSL estimates.  
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The results of the modeled LAIs showed that uncertainty analysis in parameter estimates 

can be further evaluated for understanding model fit and LAIs generated by different methods.  

Although, accurate prediction of LAI estimates is difficult because of the complex vegetation 

patterns and the structure, modeled showed that uncertainty analysis in parameter estimates can 

be used to understand the influence of each predictor in the LAI estimate. However, future 

consideration for this research would require the need for data collection based on vegetation 

homogeneity and structure, validation of TLS based measurements as well as LAI 2200 hand-

held Plant Canopy Analyzer data with most accurate LAI measurements such as destructive 

sampling, dependency of LAI measurements with projection, and selection and testing of 

additional vegetation indices or satellite products. 
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APPENDIX A. FIGURES 

 

 
 
Fig. 1: Location map of study plots at Oak opening Metro Park, Toledo 



42 
 

(a) (b) 

 
Fig. 2: Schematic diagram of filed data collection for (a) Leica ScanStation C10; and (b) the 
LAI-2200 Plant Canopy Analyzer for each study plot 
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Fig. 3: Co-registered 30 m radius point cloud  cylinder clipped into  0.25 m thick horizontal slices 
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Fig. 4: Co-registered 30 m radius point cloud  cylinder clipped into  2 m thick spherical slices 
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(a) (b) 

 
 
Fig  5: TLS point intensity and distance relationships (a) distance – object modified return 
intensity relationship (b) sample leaf - wood histogram using modified intensity and distance 
range between 16 – 18 m from the TLS(L- leaves only, W- Wood only, WL – Wood 
misclassified as leaves and LW – leaves misclassified as wood) 
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(a) 
 

(b) 

  
 
Fig. 6: Projection of sample point cloud showing (a) the orthographic view from TLS; and (b) 
rasterized image from the orthographic view  
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Fig 7: Point spacing variation with distance to the TLS C 10 
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(a) (b) 

 

 
  
Fig 8: Hemispherical images derived from TLS point clouds where (a) are points in a unit sphere 
surface; and (b) is stereographically projected rasterized image 
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Fig. 9: Comparison between LAIs measured from LAI 2200 Plant Canopy Analyzer and TLS 
measurements (LAI2200- LAI from LAI 2200 Plant Canopy Analyzer, Le -  Effective LAI from 
Plant Canopy Analyzer, TLSO_W – Orthographic LAI with both wood and foliage biomass, 
TLSO orthographic LAI with only foliage, TLSS_W – Stereographic LAI with both wood and 
foliage biomass and TLSS – stereographic LAI with only foliage) 
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Fig. 10: Residual plots for the six different types of LAI measurements 
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(a) (b) (c) 

   
(d)  (e) (f) 

   
Fig.11 :  Plots of Moran’s I test for assessing spatial autocorrelation of model residuals (a) for 
LAI 2200 data (Morans’s I = 0.0149) (b) for Le data (Morans’s I = 0.0788) (c) for TLSO_W data 
(Morans’s I = 0.0562) (d) for TLSO data (Morans’s I = -0.1511) (e) for TLSS_W data (Morans’s 
I = -0.0439); and (f) for TLSS data (Morans’s I = -0.1563) 
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(a) (b) (c) 

   
(d) (e) (f) 

   
 

Fig. 12: Estimated LAIs using BLR mean values for (a) LAI 2200, (b) Le, (c) TLSO_W, (d) 
TLSO, (e) TLSS_W; and (f) TLSS data 
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(a)                  (b) 

 
 

  
 

Fig.13: (a) Mean LAI estimates and (b) standard deviation of LAI estimates using the six 
predictive models  
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APPENDIX B: TABLES 

Table 1. Significant vegetation indices used for model development 

Vegetation Index Derivation 
based on Equation Reference 

Normalized Difference 
Vegetation Index 
(NDVI) 

Slope based NDVI = (NIR−Red)
(NIR+Red) 

Rouse et 
al.,1974 

Soil Adjusted 
Vegetation Index 
(SAVI) 

Slope based 
(soil noise) SAVI = (NIR−Red)

(NIR+Red)
+ (1 + L) Huete (1988) 

Difference Vegetation 
Index (DVI) 

Distance 
based DVI = m ∗ NIR − Red 

Richardson 
and 
Wiegand, 
1977) 

Weighted Difference 
Vegetation Index 
(WDVI) 

Distance 
based (soil 

noise) 
WDVI = NIR − m ∗ Red Clevers, 

1989 

Perpendicular 
Vegetation Index III 
(PVI3) 

Distance 
based PVI3 = (c ∗ NIR) − (m ∗ Red) Qi et al., 

1994 

NIR – Red reflectance, Red – Red Reflectance, L- Soil Adjustment factor (used as 0.5), m- Slope 
of the soil line, c – intercept of the soil line 
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Table 2: Uncertainty estimates of model coefficients using Bayesian inference with MCMC 
simulation 

Parameters Mean SD 2.5% 25% Median 75% 97.5% 

Model 1:           LAI-2200 = 3.020 + 0.007 * WDVI 

Intercept 3.020 0.701 1.60 2.574 3.036 3.486 4.360 
WDVI 0.007 0.004 0.00 0.005 0.007 0.010 0.015 

Model 2:           Le = 2.582 + 0.008 * WDVI 

Intercept 2.582 0.639 1.288 2.176 2.597 3.007 3.803 
WDVI 0.008 0.003 0.001 0.005 0.008 0.010 0.015 

Model 3:           TLSO_W = 1.288 + 0.004 * WDVI 

Intercept 1.288 0.342 0.595 1.070 1.295 1.515 1.941 
WDVI 0.004 0.002 0.001 0.003 0.004 0.005 0.008 

Model 4:           TLSO = 0.596 + 0.394 * NDVI – 0.511 * SAVI + 0.133 * PVI3 

Intercept 0.596 0.248 0.108 0.434 0.597 0.760 1.086 
NDVI 0.394 0.144 0.107 0.301 0.393 0.493 0.678 
SAVI -0.511 0.188 -0.881 -0.640 -0.509 -0.390 -0.138 
PVI3 0.133 0.048 0.037 0.102 0.133 0.166 0.229 

Model 5:           TLSS_W = 3.752 + 0.006 * DVI + 0.008 * SAVI 

Intercept 3.752 0.907 1.980 3.158 3.757 4.357 5.521 
DVI 0.006 0.004 -0.001 0.004 0.006 0.009 0.013 
SAVI 0.008 0.004 0.000 0.006 0.008 0.011 0.016 

Model 6:           TLSS = 2.493 + 1.349 * NDVI -  1.747 * SAVI + 0.452 * PVI3 

Intercept 2.493 0.790 0.934 1.973 2.494 3.013 4.055 
NDVI 1.349 0.460 0.434 1.051 1.344 1.664 2.256 
SAVI -1.747 0.599 -2.928 -2.157 -1.741 -1.360 -0.556 
PVI3 0.452 0.154 0.145 0.352 0.450 0.558 0.756 
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APPENDIX C: CODES 

1. Code for separating TLS point cloud based on distance and intensity (In R statistical 

software)  

#set environment 
setwd("F:/RSoft/new pro/input") 
 
#remove objects  
rm(list=objects()) 
 
#take start time 
ts1 <- Sys.time() 
 
intThreshold <- 850 
 
#read all input files 
inputDir <- paste(getwd(),"/",sep="") 
resultDir <- paste(getwd(),"/../result/",sep="") 
files <- list.files(pattern=".pts") 
 
#Looping through files in the directory 
for(f in 1:length(files)) 
{ 
  inFilePath <- paste(inputDir, files[f], sep="") 
  baseFileName <- gsub(".pts", "", files[f]) 
  resultFilePath <- paste(resultDir, "sep_", baseFileName, ".txt", sep="") 
 
  if(baseFileName =='8'){ 
    intThreshold <- 825 
  } else if(baseFileName =='10'){ 
        intThreshold <- 825 
  } else if(baseFileName =='12'){ 
    intThreshold <- 925 
  } else if(baseFileName =='14'){ 
    intThreshold <- 875 
  } else if(baseFileName =='16'){ 
    intThreshold <- 850 
  } else if(baseFileName =='18'){ 
    intThreshold <- 800 
  } else if(baseFileName =='20'){ 
    intThreshold <- 800 
  } else if(baseFileName =='22'){ 
    intThreshold <- 850 
  } else if(baseFileName =='24'){ 
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    intThreshold <- 850 
  } else if(baseFileName =='26'){ 
    intThreshold <- 825 
  } else if(baseFileName =='28'){ 
    intThreshold <- 825 
  } else if(baseFileName =='30'){ 
    intThreshold <- 825 
  } else if(baseFileName =='32'){ 
    intThreshold <- 800 
  } else if(baseFileName =='34'){ 
    intThreshold <- 800 
  } else if(baseFileName =='36'){ 
    intThreshold <- 800 
  } else if(baseFileName =='38'){ 
    intThreshold <- 800 
  } else if(baseFileName =='40'){ 
    intThreshold <- 800 
  } else if(baseFileName =='42'){ 
    intThreshold <- 800 
  } else if(baseFileName =='44'){ 
    intThreshold <- 800 
  } else { 
    intThreshold <- 850 
  } 
 
  print(paste("Processing file",files[f],"started...")) 
  print(resultFilePath) 
 
  mydata <- read.table(inFilePath,header = T, sep ='') 
  attach(mydata) 
 
  num <- 0 
  num <- dim(mydata) 
  num[1] 
 
  #filteredData <- subset(mydata, Int > 850) 
  filteredData <- subset(mydata, intensity > (intThreshold - 2000)) 
 
  write.table(filteredData, resultFilePath, sep="\t", row.names=F)  
 
  detach(mydata) 
  rm(mydata)  
  rm(filteredData)  
  print(paste("Processing file",files[f],"ended...")) 
} 
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ts2 <- Sys.time() 
print(ts2 - ts1) 
 
 
2. Code behind the conversion of Cartesian coordinates to stereographic projection (In R 

statistical software)   

 
#set environment 

setwd("E:/Oak/37/sphere_data/sep_37") 
 
#remove objects 
rm(list=objects())  
 
#take start time 
ts1 <- Sys.time() 
 
  calcDist <- function(p){ 
    p[5] <- sqrt((p[1])^2 + (p[2])^2 + (p[3])^2) 
 
    p[1] <- (p[1])/(p[5])  
    p[2] <- (p[2])/(p[5])  
    p[3] <- (p[3])/(p[5]) 
 
    return(p) 
  } 
 
  calcSt <- function(q){ 
    zenith <- acos(q[3])/(q[8])    
    st_zenith <- ((pi/2)*tan(zenith/2)) 
   
    q[1] <- (q[8])*sin(st_zenith)*cos(q[7]) 
    q[2] <- (q[8])*sin(st_zenith)*sin(q[7]) 
    q[3] <- (q[8])*cos(st_zenith) 
     
    return(q) 
  }   
 
#read all input files 
inputDir <- paste(getwd(),"/",sep="") 
resultDir <- paste(getwd(),"/../unit/",sep="") 
 
files <- list.files(pattern=".txt") 
 



59 
 
#Looping through files in the directory 
for(f in 1:length(files)) 
{ 
  ts2 <- Sys.time()   
 
  inFilePath <- paste(inputDir, files[f], sep="") 
  resultFilePath <- paste(resultDir, "unit_", files[f], sep="") 
 
  print(inFilePath) 
  print(resultFilePath) 
 
  mydata <- read.table(inFilePath,header=T,sep='\t')   
 
  mydata <- apply(mydata, 1, calcDist) 
  mydata <- t(mydata [1:4,]) 
     
  write.table(mydata, resultFilePath, row.names = F,sep="\t")    
  rm(mydata) 
   
  print(paste(files[f],"->")) 
  print(Sys.time() - ts2) 
  rm(ts2) 
  rm(resultFilePath)   
} 
 
print("Total time:") 
print(Sys.time() - ts1) 
 
 
3. Code for uncertainty estimates through OPENBUGS (In R statistical software)  

 
getwd() 
setwd("C:/Users/nilang/Desktop/DATA") 
getwd() 
 
objects() 
rm(mydata) 
rm(list=objects()) 
 
# Load R2WinBUGS package 
library(R2OpenBUGS) 
 
# Data (R 'list' format) 
I = 30  
data = read.table('NW_RAD_SIG_DATA.txt', header = T, sep = '\t') 
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attach(data) 
summary(data) 
datax = list("LAI2200","TLSS","Le","TLSO", "TLSO_W", 
"TLSS_W","PVI3","NDVI","SAVI", "DVI", "WDVI") 
 
# MCMC details 
nb.iterations = 4000 
nb.burnin = 1000 
 
# Initial values 
 
inits<-function(){list (intercept=dnorm(0, 1.0E-3),slope.DVI=dnorm(0, 1.0E-3), 
slope.SAVI=dnorm(0, 1.0E-3) ,prec=dgamma(0.001, 0.001))} 
 
nb.chains = 3 #length(inits) 
 
# Parameters to be monitored 
parameters <- c("intercept","slope.DVI", "slope.SAVI") 
 
# MCMC simulations  
     data.sim <- bugs(datax,  
                inits,  
                parameters,  
                "RAD_R_TLSS_E.txt",  
                n.chains = nb.chains,  
                n.iter = nb.iterations,  
                n.burnin = nb.burnin, 
                n.thin = 3,  
                debug=TRUE) 
 
 
# Check convergence   
   plot(data.sim, digits.summary=3)  
   print(data.sim, digits.summary=3)  
 
# Plot the posterior of beta 
   samples <- data.sim$sims.matrix #samples is a matrix with all the MCMC samples. Each 
variable is a column 
   
#hist(samples[,3],main='Intercept') #the third column is beta 
 
par(mfrow=c(1,3), mar=c(2,3,2,0.5), mar=c(4.1,3.9,1.1,1.1), oma=c(0,0,0,0), cex=0.75) 
 
plot(density(as.matrix(samples[,1])), xlim = c(-0.005, 5),type = "l", col = "black", main = "", 
xlab = "Intercept", ylab = "Probability Density")  
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plot(density(as.matrix(samples[,2])), xlim = c(-0.005, 5),type = "l", col = "black", main = "", 
xlab = "slope.DVI", ylab = "")  
plot(density(as.matrix(samples[,2])), xlim = c(-0.005, 5),type = "l", col = "black", main = "", 
xlab = "slope.SAVI", ylab = "")  
 
# Mode of data 
x =(as.matrix(samples[,2])) 
y = x[rev(order(table(x)))[1]]  
 
summary(samples) 
# intercept 
quantile(samples[,1], c(.40, .45, .50, .55, .60)) 
#slope.DVI 
quantile(samples[,2], c(.40, .45, .50, .55, .60)) 
#slope.SAVI 
quantile(samples[,3], c(.40, .45, .50, .55, .60)) 
 
# Save results 
save(data.sim, file = "C:/Users/nilang/Desktop/DATA/para_TLSS_W") 
write.table(samples , "C:/Users/nilang/Desktop/DATA/TLSS_W_fit.txt",row.names = F, sep='\t')  
 
myfit <- lm(data$TLSS_W ~ data$DVI + data$SAVI  ,  data=data) 
summary(myfit) 
 
coefficients(myfit) 
confint(myfit, level=0.95) 
Predicted <- fitted(myfit) 
summary(Predicted) 
fitted(myfit) 
Residual<-residuals(myfit) 
summary(Residual) 
residuals(myfit) 
NEW <- cbind(TLSS_W,Predicted, Residual) 
write.table(NEW , "C:/Users/nilang/Desktop/DATA/p_TLSS_W.txt", row.names = F,sep='\t') 
 
plot(TLSS_W, residuals(myfit)) 
abline(a = NULL, b = NULL, h = 0, v = NULL, reg = NULL,coef = NULL, untf = FALSE) 
plot(fitted(myfit), residuals(myfit)) 
abline(a = NULL, b = NULL, h = 0, v = NULL, reg = NULL,coef = NULL, untf = FALSE) 
 
data = read.table('p_TLSO_W.txt', header = T, sep = '\t') 
attach(data) 
summary(data) 
 
sim<- data$Predicted 
obs<- data$TLSS_W 
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rmse = sqrt( mean( (sim - obs)^2, na.rm = TRUE) ) 
rmse 
 
 
 
4. Code for uncertainty estimates through Bayesian inference and MCMC simulation (In 

OPENBUGS software)  

model 

                { 
                                for( i in 1 : N ) 
                                    { 
                                                 TLSS_E[i] ~ dnorm(mu[i],tau)                                                               

mu[i] <- intercept  + slope.DVI * DVI[i]  + slope.SAVI * SAVI[i]  
                                                }                              
  
  
                                # Priors for regression parameters 
         intercept ~ dnorm(0,0.001) 
                                slope.DVI ~ dnorm(0,0.001) 
                                slope.SAVI ~ dnorm(0,0.001) 
                                                
                                #prior for the precision 
                                tau ~ dgamma(0.001, 0.001) 
                                
                                sigma <- 1 / sqrt(tau) 
  } 
  
#data 
list(N=30,TLSS_E=c(5.81,8.09,6.26,5.74,6.42,7.72,5.19,7.9,7.46,5.92,6.88,4.07,5.59,6.2,5.

8,6.87,5.94,9.23,4.98,7.08,5.85,7.06,4.57,4.96,5.85,5.64,7.53,7.99,7.37,3.69),DVI=c(175.229801
9,93.51725996,235.4543678,132.5262049,177.2985662,136.2273031,125.551985,255,104.0395
28,182.9606771,196.3966371,131.0689714,124.2536841,113.0801169,163.4349115,146.555273
3,176.2558535,166.2413452,15.05325308,153.0717169,107.8862791,84.65716091,21.55814305
,210.3019622,204.0311384,175.2070822,115.3426505,227.9484356,110.647872,0),SAVI=c(23
9.7937357,240.140154,179.6712111,245.3214433,138.2702592,229.7132279,223.8849386,142.
5145443,255,190.6781454,172.2025034,165.4618911,220.2188987,217.5877064,239.9427044,2
24.0092261,131.9703826,248.3581125,164.9391785,202.6132691,228.1715343,242.4425574,16
8.6589881,209.4675912,252.1986837,234.95005,231.2390551,144.8874655,253.1198214,0)) 

  
# Initial Values 
list(intercept=0, slope.DVI=0, slope.SAVI=0, tau=0.001) 
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